...
首页> 外文期刊>Nuclear fusion >Gyrokinetic predictions of multiscale transport in a Dlll-D ITER baseline discharge
【24h】

Gyrokinetic predictions of multiscale transport in a Dlll-D ITER baseline discharge

机译:Dlll-D ITER基线放电中多尺度转运的运动动力学预测

获取原文
获取原文并翻译 | 示例
           

摘要

New multiscale gyrokinetic simulations predict that electron energy transport in a DIII-D ITER baseline discharge with dominant electron heating and low input torque is multiscale in nature, with roughly equal amounts of the electron energy flux Q_e coming from long wavelength ion-scale (k_yρ_s < 1) and short wavelength electron-scale (k_yρ_s > 1) fluctuations when the gyrokinetic results match independent power balance calculations. Corresponding conventional ion-scale simulations are able to match the power balance ion energy flux Q_i, but systematically underpredict Q_e when doing so. Significant nonlinear cross-scale couplings are observed in the multiscale simulations, but the exact simulation predictions are found to be extremely sensitive to variations of model input parameters within experimental uncertainties. Most notably, depending upon the exact value of the equilibrium E × B shearing rate γ_(E×B) used, either enhancement or suppression of the long-wavelength turbulence and transport levels in the multiscale simulations is observed relative to what is predicted by ion-scale simulations. While the enhancement of the long wavelength fluctuations by inclusion of the short wavelength turbulence was previously observed in similar multiscale simulations of an Alcator C-Mod L-mode discharge, these new results show for the first time a complete suppression of long-wavelength turbulence in a multiscale simulation, for parameters at which conventional ion-scale simulation predicts small but finite levels of low-k turbulence and transport consistent with the power balance Q_i. Although computational resource limitations prevent a fully rigorous validation assessment of these new results, they provide significant new evidence that electron energy transport in burning plasmas is likely to have a strong multiscale character, with significant nonlinear cross-scale couplings that must be fully understood to predict the performance of those plasmas with confidence.
机译:新的多尺度陀螺动力学仿真预测,在DIII-D ITER基线放电中,电子占主导地位的电子加热和低输入转矩下的电子能量传输本质上是多尺度的,而电子能量通量Q_e大致相等,来自长波长离子尺度(k_yρ_s< 1)和短波电子标度(k_yρ_s> 1)波动,当陀螺动力学结果与独立的功率平衡计算匹配时。相应的常规离子规模模拟能够匹配功率平衡离子能量通量Q_i,但这样做时会系统地低估Q_e。在多尺度模拟中观察到了显着的非线性跨尺度耦合,但是发现精确的模拟预测对实验不确定性内的模型输入参数的变化极为敏感。最值得注意的是,取决于所使用的平衡E×B剪切速率γ_(E×B)的精确值,相对于离子预测的结果,在多尺度模拟中观察到了长波湍流和传输能级的增强或抑制。规模的模拟。虽然先前在Alcator C-Mod L-模式放电的类似多尺度模拟中观察到通过包含短波长湍流而增加了长波长波动,但这些新结果首次显示了对长波长湍流的完全抑制。多尺度模拟,针对常规离子尺度模拟预测与功率平衡Q_i一致的小但有限水平的低k湍流和输运的参数。尽管计算资源有限,无法对这些新结果进行严格的验证评估,但它们提供了重要的新证据,表明燃烧的等离子体中的电子能量传输可能具有很强的多尺度特性,必须充分理解非线性显着的跨尺度耦合才能预测这些等离子体的性能充满信心。

著录项

  • 来源
    《Nuclear fusion》 |2017年第6期|066043.1-066043.12|共12页
  • 作者单位

    Center for Energy Research, University of California-San Diego, La Jolla, CA, United States of America;

    Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA, United States of America;

    Princeton Plasma Physics Laboratory, Princeton, NJ, United States of America;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    plasma turbulence; gyrokinetics; multiscale; electron transport;

    机译:等离子体湍流陀螺动力学多尺度电子传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号