...
首页> 外文期刊>Nuclear fusion >Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes
【24h】

Scaling mechanisms of vapour/plasma shielding from laser-produced plasmas to magnetic fusion regimes

机译:蒸气/等离子体屏蔽从激光产生的等离子体到磁聚变机制的缩放机制

获取原文
获取原文并翻译 | 示例
           

摘要

The plasma shielding effect is a well-known mechanism in laser-produced plasmas (LPPs) reducing laser photon transmission to the target and, as a result, significantly reducing target heating and erosion. The shielding effect is less pronounced at low laser intensities, when low evaporation rate together with vapour/plasma expansion processes prevent establishment of a dense plasma layer above the surface. Plasma shielding also loses its effectiveness at high laser intensities when the formed hot dense plasma plume causes extensive target erosion due to radiation fluxes back to the surface. The magnitude of emitted radiation fluxes from such a plasma is similar to or slightly higher than the laser photon flux in the low shielding regime. Thus, shielding efficiency in LPPs has a peak that depends on the laser beam parameters and the target material. A similar tendency is also expected in other plasma-operating devices such as tokamaks of magnetic fusion energy (MFE) reactors during transient plasma operation and disruptions on chamber walls when deposition of the high-energy transient plasma can cause severe erosion and damage to the plasma-facing and nearby components. A detailed analysis of these abnormal events and their consequences in future power reactors is limited in current tokamak reactors. Predictions for high-power future tokamaks are possible only through comprehensive, time-consuming and rigorous modelling. We developed scaling mechanisms, based on modelling of LPP devices with their typical temporal and spatial scales, to simulate tokamak abnormal operating regimes to study wall erosion, plasma shielding and radiation under MFE reactor conditions. We found an analogy in regimes and results of carbon and tungsten erosion of the divertor surface in ITER-like reactors with erosion due to laser irradiation. Such an approach will allow utilizing validated modelling combined with well-designed and well-diagnosed LPP experimental studies for predicting consequences of plasma instabilities in complex fusion environment, which are of serious concern for successful energy production.
机译:等离子体屏蔽效应是激光产生等离子体(LPP)中的一种众所周知的机制,可减少激光向靶的光子传输,从而显着减少靶的加热和腐蚀。当低蒸发速率以及蒸气/等离子膨胀过程阻止在表面上方建立致密的等离子层时,在低激光强度下屏蔽效果不太明显。当形成的热密集等离子体羽流由于返回到表面的辐射通量而引起广泛的目标腐蚀时,等离子体屏蔽在高激光强度下也会失去其作用。在低屏蔽状态下,从此类等离子体发出的辐射通量的大小类似于或略高于激光光子通量。因此,LPP中的屏蔽效率具有一个峰值,该峰值取决于激光束参数和目标材料。在其他等离子体操作设备中,例如在瞬变等离子体操作过程中的磁聚变能(MFE)反应堆的托卡马克,以及在高能瞬变等离子体的沉积会导致严重的腐蚀和对等离子体的破坏时,在腔室壁上的破坏,也有望出现类似趋势面和附近的组件。在当前的托卡马克反应堆中,对这些异常事件及其对未来动力堆的后果的详细分析是有限的。只有通过全面,耗时且严格的建模,才能预测未来的大功率托卡马克。我们基于具有典型时空尺度的LPP设备建模,开发了缩放机制,以模拟托卡马克异常运行方式,以研究MFE反应堆条件下的壁腐蚀,等离子体屏蔽和辐射。我们发现,在类似ITER的反应堆中,由于激光辐照而导致的偏滤器表面的碳和钨腐蚀,其机制和结果都有相似之处。这种方法将允许利用经过验证的模型与精心设计和良好诊断的LPP实验研究相结合,以预测复杂聚变环境中等离子体不稳定的后果,这对于成功产生能量非常重要。

著录项

  • 来源
    《Nuclear fusion》 |2014年第2期|023004.1-023004.9|共9页
  • 作者单位

    Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA;

    Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MFE; LPP; plasma radiation; plasma shielding;

    机译:MFE;LPP;等离子体辐射等离子屏蔽;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号