...
首页> 外文期刊>Nuclear fusion >The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment
【24h】

The effect of progressively increasing lithium coatings on plasma discharge characteristics, transport, edge profiles and ELM stability in the National Spherical Torus Experiment

机译:在国家球形圆环实验中,逐渐增加锂涂层对等离子体放电特性,传输,边缘轮廓和ELM稳定性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium wall coatings have been shown to reduce recycling, suppress edge-localized modes (ELMs), and improve energy confinement in the National Spherical Torus Experiment (NSTX). Here we document the effect of gradually increasing lithium wall coatings on the discharge characteristics, with the reference ELMy discharges obtained in boronized, i.e. non-lithiated conditions. We observed a continuous but not quite monotonic reduction in recycling and improvement in energy confinement, a gradual alteration of edge plasma profiles, and slowly increasing periods of ELM quiescence. The measured edge plasma profiles during the lithium-coating scan were simulated with the SOLPS code, which quantified the reduction in divertor recycling coefficient from ~98% to ~90%. The reduction in recycling and fuelling, coupled with a drop in the edge particle transport rate, reduced the average edge density profile gradient, and shifted it radially inwards from the separatrix location. In contrast, the edge electron temperature (T_e) profile was unaffected in the H-mode pedestal steep gradient region within the last 5% of normalized poloidal flux, Ψn; however, the T_e gradient became steeper at the top of the H-mode pedestal for 0.8 < ΨN < 0.94 with lithium coatings. The peak pressure gradients were comparable during ELMy and ELM-free phases, but were shifted away from the separatrix in the ELM-free discharges, which is stabilizing to the current-driven instabilities thought to be responsible for ELMs in NSTX.
机译:在国家球形圆环实验(NSTX)中,锂壁涂层已显示出可减少回收利用,抑制边缘定位模式(ELM)并改善能量限制。在这里,我们记录了逐渐增加的锂壁涂层对放电特性的影响,其中参考的ELMy放电是在硼化(即非锂化)条件下获得的。我们观察到循环的连续减少但不是单调减少,能量限制的改善,边缘等离子体轮廓的逐渐变化,以及ELM静止期的缓慢增加。用SOLPS代码模拟了在锂涂层扫描过程中测得的边缘等离子体轮廓,它量化了偏滤器再循环系数从〜98%降低到〜90%的幅度。再循环和燃料供给的减少,以及边缘颗粒传输速率的降低,降低了平均边缘密度分布梯度,并将其从分离线位置径向向内移动。相比之下,边缘电子温度(T_e)曲线在归一化多倍体通量Ψn的最后5%内的H型基座陡峭梯度区域中不受影响;然而,对于带有锂涂层的H型基座,T_e梯度在0.8 <ΨN<0.94处变得更陡。在没有ELMy和无ELM的阶段,峰值压力梯度是可比的,但在没有ELM的放电中,峰值压力梯度偏离了分离线,这稳定了电流驱动的不稳定性,该电流不稳定性被认为是造成NSTX中ELM的原因。

著录项

  • 来源
    《Nuclear fusion》 |2012年第8期|p.4.1-4.14|共14页
  • 作者单位

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA Princeton University, 1 Nassau Hall, Princeton, NJ 08544, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Purdue University, 400 Central Drive, West Lafayette, IN 47907, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    General Atomics, 3550 General Atomics Ct., San Diego, CA 92121, USA;

    University of Washington, 1410 NE Campus Parkway, Seattle, WA 98195, USA;

    Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543, USA;

    Columbia University, 1130 Amsterdam Avenue, New York, NY 10027, USA;

    General Atomics, 3550 General Atomics Ct., San Diego, CA 92121, USA;

    Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号