...
首页> 外文期刊>Nuclear fusion >Improved-confinement plasmas at high temperature and high beta in the MST RFP
【24h】

Improved-confinement plasmas at high temperature and high beta in the MST RFP

机译:MST RFP中高温和高β浓度下改进的约束等离子体

获取原文
获取原文并翻译 | 示例
           

摘要

We have increased substantially the electron and ion temperatures, the electron density, and the total beta in plasmas with improved energy confinement in the Madison Symmetric Torus (MST). The improved confinement is achieved with a well-established current profile control technique for reduction of magnetic tearing and reconnection. A sustained ion temperature > 1 keV is achieved with intensified reconnection-based ion heating followed immediately by current profile control. In the same plasmas, the electron temperature reaches 2 keV, and the electron thermal diffusivity drops to about 2 m~2 s~(-1). The global energy confinement time is 12 ms. This and the reported temperatures are the largest values yet achieved in the reversed-field pinch (RFP). These results were attained at a density ~10~(19) m~(-3). By combining pellet injection with current profile control, the density has been quadrupled, and total beta has nearly doubled to a record value of about 26%. The Mercier criterion is exceeded in the plasma core, and both pressure-driven interchange and pressure-driven tearing modes are calculated to be linearly unstable, yet energy confinement is still improved. Transient momentum injection with biased probes reveals that global momentum transport is reduced with current profile control. Magnetic reconnection events drive rapid momentum transport related to large Maxwell and Reynolds stresses. Ion heating during reconnection events occurs globally, locally, or not at all, depending on which tearing modes are involved in the reconnection. To potentially augment inductive current profile control, we are conducting initial tests of current drive with lower-hybrid and electron-Bernstein waves.
机译:我们在麦迪逊对称圆环(MST)中改善了能量限制,从而大大提高了等离子体中的电子和离子温度,电子密度和总β。通过一种完善的电流分布控制技术可以减少磁撕裂和重新连接,从而实现改善的限制。通过增强的基于重新连接的离子加热,随后立即进行电流曲线控制,可实现> 1 keV的持续离子温度。在相同的等离子体中,电子温度达到2 keV,电子的热扩散率下降到约2 m〜2 s〜(-1)。全球能量限制时间为12 ms。该温度和所报告的温度是反向场收缩(RFP)所能达到的最大值。这些结果是在〜10〜(19)m〜(-3)的密度下获得的。通过将丸粒注入与电流分布控制相结合,密度增加了三倍,总β值几乎翻了一番,达到约26%的创纪录值。等离子芯中超过了Mercier准则,并且计算出压力驱动的互换模式和压力驱动的撕裂模式都是线性不稳定的,但能量约束仍然得到改善。带有偏置探头的瞬态动量注入表明,通过当前曲线控制,整体动量传输会减少。磁重联事件推动了与大麦克斯韦应力和雷诺应力有关的快速动量传递。重新连接过程中的离子加热会全局,局部或根本不发生,这取决于重新连接所涉及的撕裂模式。为了潜在地增强感应电流曲线控制,我们正在对低杂波和电子伯恩斯坦波进行电流驱动的初始测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号