...
首页> 外文期刊>Nuclear fusion >Chapter 4: Power and particle control
【24h】

Chapter 4: Power and particle control

机译:第4章:功率和粒子控制

获取原文
           

摘要

Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137-2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma-materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral-neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma-materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.
机译:自从ITER Physics Basis出版物(ITER Physics Basis编辑器等1999 Nucl。Fusion 39 2137-2664)以来,在了解将确定等离子边缘特性及其与ITER中物质元素相互作用的过程方面取得了进展。已取得重大进展的实验领域是刮除层(SOL)中的能量传输,特别是异常传输结垢,SOL中的粒子传输在转移等离子体与主腔室材料的相互作用中起主要作用元素,在材料元素上沉积的边缘局部模式(ELM)能量以及ELM能量从主等离子体到面对等离子体的组件的传输机制,等离子体分离的物理原理和中性动力学,包括边缘密度分布结构和等离子体控制粒子含量和He去除,聚变装置中低Z和高Z材料的腐蚀,它们向核心等离子体的传输以及它们在等离子体边缘的迁移(包括混合材料的形成),确定保留尺寸和位置的过程聚变装置中tri的去除方法,去除it的方法以及确定各种加油方法效率的过程朝着ITER要求的方向发展。这一实验进展伴随着边缘等离子体和等离子体材料相互作用的物理过程建模工具的开发,以及通过将其预测结果与新的实验结果进行比较来进一步验证这些模型。建模开发和验证的进展主要集中在以下几个方面:通过包括偏滤器的详细几何特征和引入物理效应来改进等离子边缘建模代码对ITER的预测。针对ITER条件(例如氢辐射传输和中性-中性碰撞)确定在分光器处的分光器参数,等离子边缘离子轨道的建模,这可以在确定分光器目标处的功率沉积,等离子材料模型方面发挥作用ELM和破坏过程中的动力学相互作用和等离子体动力学相互作用,等离子体边缘处杂质运移的模型以描述杂质对核心的污染以及边缘等离子体处侵蚀材料的迁移及其相关的tri保留以及确定湍流过程的湍流模型能量和粒子在SOL上的异常传输。讨论了ITER中参考方案的预期性能,ITER装置的操作以及面向等离子体的材料的寿命的含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号