...
首页> 外文期刊>Nuclear fusion >Transport simulations of ITER with broad density profiles and high radiative fraction
【24h】

Transport simulations of ITER with broad density profiles and high radiative fraction

机译:具有宽密度分布和高辐射分数的ITER输运模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Special versions of the 1.5-D BALDUR predictive transport code are used to explore the confinement in the ignited ITER EDA by self-consistent calculations. The code computes 2-D equilibria and solves 1-D transport equations in the bulk and scrape-off layer with empirical transport coefficients for the ohmic, L and ELMy H mode regimes. The emphasis is on scenarios with flat density profiles and high, fixed radiative power in the main chamber due to the seeded impurities argon and neon. It is shown that self-sustained steady state thermonuclear burn is achieved for 370 s and is compatible with the flat density profiles and strong radiative cooling. The necessary local energy and particle transport are presented. In the argon and neon scenarios, the required radiation corrected energy confinement times are 4.1 and 3.5 s, respectively, which are achievable according to the ITER ELMy H mode scaling. The advantage of neon originates from its smaller radiative loss within the separatrix of 37% of the total radiation in the main chamber, compared with 60% in the case of argon. A significant radiative loss from the confinement zone, mainly by bremsstrahlung, cannot be avoided. It raises the required energy confinement time and is the price to be paid for reduction of the divertor heat load by radiative cooling in the main chamber. In steady state, a helium fraction of 5% is computed. The fractions of helium, argon and neon and the resulting fuel dilution are considerably lower than with peaked density profiles.
机译:使用1.5D BALDUR预测运输代码的特殊版本,通过自洽计算来探索点燃的ITER EDA的限制。该代码可计算2维平衡,并利用欧姆,L和ELMy H模式态的经验输运系数来求解体层和刮除层中的一维输运方程。重点是由于杂质氩和氖原子的播种,在主腔室内具有平坦的密度分布和较高的固定辐射功率的场景。结果表明,自我维持的稳态热核燃烧达到了370 s,并且与平面密度分布和强辐射冷却兼容。介绍了必要的局部能量和粒子传输。在氩气和氖气情况下,所需的经辐射校正的能量约束时间分别为4.1 s和3.5 s,这可以根据ITER ELMy H模式缩放实现。氖的优点来自于其在隔室内的较小辐射损耗,占主腔室总辐射的37%,而在氩气情况下仅为60%。不能避免主要由致辐射引起的从限制区产生的大量辐射损失。这增加了所需的能量限制时间,并且是通过主腔室中的辐射冷却来减少偏滤器热负荷的代价。在稳定状态下,计算出的氦气含量为5%。氦气,氩气和氖气的比例以及所产生的燃料稀释比密度峰值曲线要低得多。

著录项

  • 来源
    《Nuclear fusion》 |1995年第8期|p. 969-980|共12页
  • 作者

    G. Becker;

  • 作者单位

    Max-Planck-Institute für Plasmaphysik, Euratom-IPP Association, Garching, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 原子核物理学、高能物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号