...
首页> 外文期刊>Nuclear Technology >GAS CORE REACTOR WITH MAGNETOHYDRODYNAMIC POWER SYSTEM AND CASCADING POWER CYCLE
【24h】

GAS CORE REACTOR WITH MAGNETOHYDRODYNAMIC POWER SYSTEM AND CASCADING POWER CYCLE

机译:具有磁氢动力系统和级联功率循环的气体核反应器

获取原文
获取原文并翻译 | 示例
           

摘要

The U.S. Department of Energy initiative Generation IV aim is to produce an entire nuclear energy production system with next-generation features for certification before 2030. A Generation IV-capable system must have superior sustainability, safety and reliability, and economic cost advantages in comparison with third generation light water reactors (LWRs). A gas core reactor (GCR) with magnetohydrodynamic (MHD) power converter and cascading power cycle forms the basis for a Generation IV concept that is expected to set the upper performance limits in sustainability and power conversion efficiency among all existing and proposed fission powered systems. A gaseous core reactor delivering thousands of megawatt fission power acts as the heat source for a high-temperature MHD power converter. A uranium tetrafluoride fuel mix, with ~95% mol fraction helium gas, provides a stable working fluid for the primary MHD Brayton cycle. The hot working fluid exiting a topping cycle MHD generator has sufficient heat to drive a conventional helium Brayton cycle with 35% thermal efficiency as well as a superheated steam Rankine cycle, with up to 40% efficiency, which recovers the waste heat from the intermediate Brayton cycle. A combined cycle efficiency of close to 70% can be achieved with only a modest MHD topping cycle efficiency. The high-temperature direct-energy conversion capability of an MHD dynamo combined with an already sophisticated steam-powered turbine industry knowledge base allows the cascading cycle design to achieve breakthrough first-law energy efficiencies previously unheard of in the nuclear power industry. Although simple in concept, the gas core reactor design has not achieved the state of technological maturity that established high-temperature gas-cooled reactors and high-temperature molten salt core reactors have pioneered. However, the GCR-MHD concept has considerable promise; for example, like molten salt reactors the fuel is continuously cycled, allowing high burnup, continuous burning of actinides, and hence greatly improved fuel utilization. The fuel inventory is two orders of magnitude lower than LWRs of comparable power output, and fissile plutonium production is likewise lower than in spent LWR fuel. Besides these features, specific GCR-MHD design challenges such as fission enhanced gas conductivity of the MHD partially ionized gas, GCR safety issues and related engineering problems are discussed.
机译:美国能源部第四代倡议的目标是在2030年之前生产出具有下一代功能的完整核能生产系统,以供认证。与第四代相比,具有第四代能力的系统必须具有卓越的可持续性,安全性和可靠性以及经济成本优势。第三代轻水堆(LWR)。具有磁流体动力(MHD)功率转换器和级联功率循环的气芯反应堆(GCR)构成了第四代概念的基础,该概念有望在所有现有和拟议的裂变动力系统中设定可持续性和功率转换效率的上限。提供数千兆瓦裂变功率的气态核反应堆充当高温MHD功率转换器的热源。含〜95%摩尔分数氦气的四氟化铀燃料混合物为MHD布雷顿一次循环提供了稳定的工作流体。离开顶部循环MHD发生器的热工作流体具有足够的热量来驱动常规氦布雷顿循环(热效率为35%)以及过热蒸汽兰金循环(效率高达40%),可从中间布雷顿回收余热周期。仅适度的MHD打顶循环效率可以达到接近70%的组合循环效率。 MHD发电机的高温直接能量转换功能与已经很成熟的蒸汽动力涡轮机行业知识库相结合,使得级联循环设计能够实现核电行业前所未有的突破性的第一律能效。尽管概念上很简单,但是气芯反应堆的设计尚未达到建立高温气冷反应堆和高温熔融盐芯反应堆的先驱技术水平。但是,GCR-MHD概念具有广阔的前景。例如,像熔融盐反应堆一样,燃料可以连续循环,从而可以实现高燃耗,act系元素的连续燃烧,从而大大提高了燃料利用率。燃料库存比同等功率输出的轻水堆低两个数量级,裂变p的产量也比废轻水堆燃料低。除了这些功能之外,还讨论了GCR-MHD的特定设计挑战,例如MHD部分电离气体的裂变增强的气体电导率,GCR安全问题以及相关的工程问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号