...
首页> 外文期刊>Ocean Dynamics >Automatic, unstructured mesh optimization for simulation and assessment of tide- and surge-driven hydrodynamics in a longitudinal estuary: St. Johns River
【24h】

Automatic, unstructured mesh optimization for simulation and assessment of tide- and surge-driven hydrodynamics in a longitudinal estuary: St. Johns River

机译:自动,非结构化网格优化,用于模拟和评估纵向河口中潮汐和潮汐驱动的水动力:圣约翰斯河

获取原文
获取原文并翻译 | 示例
           

摘要

A localized truncation error analysis with complex derivatives (LTEA+CD) is applied recursively with advanced circulation (ADCIRC) simulations of tides and storm surge for finite element mesh optimization. Mesh optimization is demonstrated with two iterations of LTEA+CD for tidal simulation in the lower 200 km of the St. Johns River, located in northeast Florida, and achieves more than an over 50% decrease in the number of mesh nodes, relating to a twofold increase in efficiency, at a zero cost to model accuracy. The recursively generated meshes using LTEA+CD lead to successive reductions in the global cumulative truncation error associated with the model mesh. Tides are simulated with root mean square error (RMSE) of 0.09-0.21 m and index of agreement (IA) values generally in the 80s and 90s percentage ranges. Tidal currents are simulated with RMSE of 0.09-0.23 m s(-1) and IA values of 97% and greater. Storm tide due to Hurricane Matthew 2016 is simulated with RMSE of 0.09-0.33 m and IA values of 75-96%. Analysis of the LTEA+CD results shows the M2 constituent to dominate the node spacing requirement in the St. Johns River, with the M4 and M6 overtides and the STEADY constituent contributing some. Friction is the predominant physical factor influencing the target element size distribution, especially along the main river stem, while frequency (inertia) and Coriolis (rotation) are supplementary contributing factors. The combination of interior- and boundary-type computational molecules, providing near-full coverage of the model domain, renders LTEA+CD an attractive mesh generation/optimization tool for complex coastal and estuarine domains. The mesh optimization procedure using LTEA+CD is automatic and extensible to other finite element-based numerical models. Discussion is provided on the scope of LTEA+CD, the starting point (mesh) of the procedure, the user-specified scaling of the LTEA+CD results, and the iteration (termination) of LTEA+CD for mesh optimization.
机译:借助复杂的导数(LTEA + CD)进行局部截断误差分析,并结合潮汐和风暴潮的高级循环(ADCIRC)仿真,对有限元网格进行优化。通过在佛罗里达州东北部的圣约翰斯河下游200公里处进行两次潮汐模拟,对LTEA + CD进行了两次迭代,证明了网格优化,并且网格节点数量减少了50%以上,这与效率提高了两倍,而模型精度却降低了零。使用LTEA + CD递归生成的网格导致与模型网格相关的全局累积截断误差的连续减小。模拟潮汐时,均方根误差(RMSE)为0.09-0.21 m,并且协议指数(IA)值通常在80s和90s百分比范围内。模拟的潮汐电流的RMSE为0.09-0.23 m s(-1),IA值为97%或更高。模拟飓风马修2016年造成的风暴潮的RMSE为0.09-0.33 m,IA值为75-96%。对LTEA + CD结果的分析表明,M2成分在圣约翰斯河的节点间距要求中占主导地位,M4和M6的潮汐和STEADY成分有所贡献。摩擦是影响目标元素尺寸分布的主要物理因素,尤其是在主要河流干沿,而频率(惯性)和科里奥利(旋转)是补充因素。内部和边界类型的计算分子的组合,提供了模型域的几乎完全覆盖,使LTEA + CD成为了一种有吸引力的网格生成/优化工具,用于复杂的沿海和河口域。使用LTEA + CD的网格优化过程是自动的,并且可以扩展到其他基于有限元的数值模型。讨论了LTEA + CD的范围,过程的起点(网格),用户指定的LTEA + CD结果缩放以及用于网格优化的LTEA + CD的迭代(终止)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号