...
首页> 外文期刊>Ocean Engineering >Numerical and theoretical investigation of the high-speed compressible supercavitating flows
【24h】

Numerical and theoretical investigation of the high-speed compressible supercavitating flows

机译:高速可压缩超空泡流的数值和理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The objective of this paper is to investigate the high-speed compressible supercavitating flows with numerical and theoretical methods. In the numerical simulation, calculations are performed by solving the Unsteady Reynolds averaged Navier-Stokes (URANS) Equations using a cell-centered finite-volume method, and the k-co SST turbulence model is applied as the closure model. Compressibility effects in liquid phase are modified by the equation of state (EOS), and vapor phase is treated as ideal gas. Firstly, the numerical results are validated with experiments conducted by Hrubes (2001). Results are shown for high-subsonic and transonic projectiles, there is a general agreement between the predicted cavity profiles and the experimental data. Secondly, the influence of the Mach number on the flow structure and cavitation dynamics from subsonic to supersonic flows is investigated. The results show that with the increase of Mach number, the radial dimension of the front cavity is reduced, which is caused by the dramatic increase of pressure around the projectile. An expression is proposed to analyze the flow parameters before and behind the shock wave based on the isentropic and potential assumption at the Mach number on the interval 1 = Ma = 2.2. The relationship between pressure and density across the shock wave is also investigated. Overall, these findings are great interest in engineering applications.
机译:本文的目的是用数值和理论方法研究高速可压缩超空化流。在数值模拟中,通过使用以单元为中心的有限体积方法求解非稳态雷诺平均Navier-Stokes(URANS)方程来进行计算,并将k-co SST湍流模型用作闭合模型。液相的可压缩性通过状态方程(EOS)进行了修改,气相被视为理想气体。首先,数值结果由Hrubes(2001)进行的实验验证。显示了高亚音速和跨音速弹丸的结果,在预测的腔轮廓和实验数据之间有一个普遍的共识。其次,研究了马赫数对从亚音速流向超音速流的流动结构和空化动力学的影响。结果表明,随着马赫数的增加,前腔的径向尺寸减小,这是由于弹丸周围压力的急剧增加引起的。根据等熵和势假设,在间隔1 <= Ma <= 2.2的马赫数下,提出了一个表达式来分析冲击波前后的流动参数。还研究了冲击波上压力与密度之间的关系。总体而言,这些发现对工程应用非常感兴趣。

著录项

  • 来源
    《Ocean Engineering》 |2018年第may15期|446-455|共10页
  • 作者单位

    Beijing Inst Technol, Sch Mech & Vehicular Engn, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mech & Vehicular Engn, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mech & Vehicular Engn, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mech & Vehicular Engn, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Mech & Vehicular Engn, 5 South Zhong Guan Cun St, Beijing 100081, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High-speed; Supercavitating flows; Compressible effects; Flow parameters; Shock wave;

    机译:高速;超空化流动;可压缩效应;流动参数;冲击波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号