...
首页> 外文期刊>Ocean Engineering >Modeling of twin-turbine systems with vertical axis tidal current turbine: Part Ⅱ-torque fluctuation
【24h】

Modeling of twin-turbine systems with vertical axis tidal current turbine: Part Ⅱ-torque fluctuation

机译:垂直轴潮流涡轮机双涡轮机系统建模:第二部分-转矩波动

获取原文
获取原文并翻译 | 示例
           

摘要

We recently showed the advantage of using a numerical system to extract energy from tidal currents by developing a new twin-turbine model (Li and Calisal, 201 Oa). Encouraged by this result, we decided to use this model to study another important characteristic of the turbine system, torque fluctuation. This effort is summarized in this paper. The torque fluctuation is expected to reduce the fatigue life of tidal current turbines, though potentially it also may deteriorate the power quality of tidal current turbines. In this paper, after reviewing the twin-turbine model, we use it to predict the torque fluctuation of the system with the same configurations as we used to study the power output in Li and Calisal (2010a). Specifically, we investigate the torque fluctuation of twin-turbine systems with various turbine parameters (e.g., relative distance between two turbines and incoming flow angle) and operational condition (e.g., tip speed ratio). The results suggest that the torque of an optimally configured twin-turbine system fluctuates much less than that of the corresponding stand-alone turbine, under the same operating conditions. We then extensively compare the hydrodynamic interaction's impact on the torque fluctuation and the power output of the system. We conclude that the hydrodynamic interactions pose more constructive impacts on the torque fluctuation than on the power output. The findings indicate that the optimally configured counter-rotating system should be a side-by-side system, and that the optimally configured co-rotating system should have the downstream turbine partially in the wake of the upstream turbine depending on the detailed configuration of the turbines. Furthermore, one must balance the optimal torque fluctuation against the optimal power output.
机译:我们最近展示了使用数值系统通过开发新的双涡轮机模型(Li and Calisal,201 Oa)从潮汐流中提取能量的优势。受此结果的鼓舞,我们决定使用此模型来研究涡轮机系统的另一个重要特性,即转矩波动。本文总结了这项工作。转矩波动预计会缩短潮流涡轮机的疲劳寿命,尽管可能还会降低潮流涡轮机的电能质量。在本文中,在回顾了双涡轮机模型之后,我们使用它来预测系统的转矩波动,该系统的配置与研究Li和Calisal(2010a)的功率输出所使用的配置相同。具体而言,我们研究具有各种涡轮机参数(例如,两个涡轮机之间的相对距离和进入的流动角度)和运行条件(例如,叶尖速比)的双涡轮机系统的扭矩波动。结果表明,在相同的运行条件下,最佳配置的双涡轮机系统的扭矩波动远小于相应的独立涡轮机。然后,我们广泛地比较了流体动力相互作用对扭矩波动和系统功率输出的影响。我们得出的结论是,流体动力相互作用对扭矩波动的影响要大于对动力输出的影响。研究结果表明,最佳配置的反向旋转系统应为并排系统,并且最佳配置的同向旋转系统应根据上游涡轮的详细配置,使下游涡轮部分位于上游涡轮之后。涡轮机。此外,必须在最佳转矩波动与最佳功率输出之间取得平衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号