...
首页> 外文期刊>Ocean Engineering >A 3D parallel particle-in-cell solver for extreme wave interaction with floating bodies
【24h】

A 3D parallel particle-in-cell solver for extreme wave interaction with floating bodies

机译:用于浮体的极端波形相互作用的3D并联粒子内求解器

获取原文
获取原文并翻译 | 示例
           

摘要

Floating structures are widely used for vessels, offshore platforms, and recently considered for deep water floating offshore wind system and wave energy devices. However, modelling complex wave interactions with floating structures, particularly under extreme conditions, remains an important challenge. Following the three-dimensional (3D) parallel particle-in-cell (PIC) model developed for simulating wave interaction with fixed bodies, this paper further extends the methodology and develops a new 3D parallel PIC model for applications to floating bodies. The PIC model uses both Lagrangian particles and Eulerian grid to solve the incompressible Navier-Stokes equations, attempting to combine both the Lagrangian flexibility for handling large free-surface deformations and Eulerian efficiency in terms of CPU cost. The wave-structure interaction is resolved via inclusion of a Cartesian cut cell method based two-way strong fluid-solid coupling algorithm that is both stable and efficient. The numerical model is validated against 3D experiments of focused wave interaction with a floating moored buoy. Good agreement between the numerical and experimental results has been achieved for the motion of the buoy and the mooring force. Additionally, the PIC model achieves a CPU efficiency of the same magnitude as that of the state-of-the-art OpenFOAM (R) model for an extreme wave-structure interaction scenario.
机译:浮动结构广泛用于船舶,海上平台,最近考虑用于深水浮动海上风系统和波能装置。然而,与浮动结构建模复杂波相互作用,特别是在极端条件下,仍然是一个重要的挑战。在开发用于模拟与固定体的模拟波相互作用的三维(3D)平行粒子(PIC)模型之后,本文进一步扩展了该方法,并开发了用于浮体的应用的新3D并行照片模型。 PIC模型使用拉格朗日粒子和欧拉栅格网格来解决不可压缩的Navier-Stokes方程,试图将拉格朗日灵活性组合在CPU成本方面处理大型自由表面变形和欧拉效率。通过包含基于笛卡尔切割的电池方法的双向强流体 - 固体耦合算法来解决波浪结构相互作用,其既稳定又高效。与浮动系泊浮标的聚焦波相互作用的3D实验验证了数值模型。为浮标和停泊力的运动实现了数值和实验结果之间的良好一致性。另外,PID模型实现了与极端波形结构交互方案的最先进的OpenFoam(R)模型相同的CPU效率。

著录项

  • 来源
    《Ocean Engineering》 |2019年第may1期|1-12|共12页
  • 作者单位

    Univ Bath Dept Architecture & Civil Engn Res Unit Water Environm & Infrastruct Resilience Bath BA2 7AY Avon England|Dalian Univ Technol State Key Lab Coastal & Offshore Engn Dalian 116024 Peoples R China;

    Univ Bath Dept Architecture & Civil Engn Res Unit Water Environm & Infrastruct Resilience Bath BA2 7AY Avon England|Dalian Univ Technol State Key Lab Coastal & Offshore Engn Dalian 116024 Peoples R China;

    Dalian Univ Technol State Key Lab Coastal & Offshore Engn Dalian 116024 Peoples R China;

    Univ Bath Dept Architecture & Civil Engn Res Unit Water Environm & Infrastruct Resilience Bath BA2 7AY Avon England;

    Jiangsu Univ Sci & Technol Sch Naval Architecture & Ocean Engn Zhenjiang 212003 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Wave-structure interaction; Extreme wave; Floating bodies; Particle-in-cell method; OpenFOAM (R) model;

    机译:波浪结构相互作用;极端波;浮体;粒子细胞方法;OpenFoam(R)模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号