...
首页> 外文期刊>Oceanographic Literature Review >Gravity, electricity and magnetism
【24h】

Gravity, electricity and magnetism

机译:重力,电和磁

获取原文
获取原文并翻译 | 示例
           

摘要

The Gravity field and steady-state ocean circulation explorer (GOCE) satellite mission which measures the Earth's gravity field with an unprecedented accuracy at short spatial scales promises to significantly advance the research of geodetic ocean mean dynamic topography (MDT). To fully exploit the GOCE's advantages and precisely determine the MDT and its associated geostrophic currents globally and regionally, we must quantify the spatial resolution of GOCE-derived MDT and the geostrophic currents' retrieving ability of GOCE. Global MDT is firstly retrieved from the GOCE earth gravity field model (GO-CONS-GCF-2-TIM5) and the altimetry sea surface height model (CNES-CLS2011_MSS) by the spectral-wise approach which can effectively suppress the omission errors. Then the Gaussian filter method is used to suppress the noise of raw MDT results. To acquire the optimal spatial filter radius of the Gaussian filter, we calculate the RMS difference between the buoy-derived geostrophic currents and those calculated from the geodetic MDT with different filter radii. Those filter radii which make the above RMS difference acquired to be minimum are the best choice of the Gaussian filter radius. Based on this filter radius determining strategy, the optimal filter radii of MDT are determined in regional, zonal and global areas. The above optimal MDTs are then used to determine the corresponding geostrophic current fields. Finally, the characteristics of GOCE-derived geostrophic currents are studied carefully by three statistics factors, i.e. the RMS differences, correlation coefficients, and the speed proportion coefficients, between geodetic and buoy-derived geostrophic currents data. (1) The optimal spatial filter radii of GOCE MDT are 102 km, 131 km, 154 km and 127 km in the regions of south and north latitudes greater than 40°, between 20° and 40°, less than 20° and the global range, respectively, which are 24 km, 27 km, 21 km and 27 km better than that of GRACE. (2) The comparison between geostrophic currents acquired from MDT and buoy data shows that 1) in strong current regions, the speed (amplitude of velocity) of buoy derived geostrophic current can be explained 70% by geostrophic current acquired from MDT; and 2) the geostrophic current speeds derived from GOCE and altimeter data are closer to the buoy data compared with that of GRACE and altimeter data. (3) The correlation coefficients of geostrophic speed derived from two different geodetic MDTs (GOCE and GRACE) and buoy-derived current speed have obvious spatial characteristics. The correlation coefficients based on GOCE results are higher than that of GRACE in the Antarctic circumpolar current region, north Atlantic region and Agulhas region, but vice versa in the equator region. (4) The RMS differences of geostrophic current velocity calculated from GOCE MDT and buoy-derived current velocity are generally smaller than that of GRACE in strong geostrophic currents regions (except the equator region). For example, the above RMS differences in GOCE results are 16% and 24% smaller than that of GRACE results in the North Atlantic and Agulhas region, respectively. Firstly, the regional optimized filter radii of MDT are somewhat distinct in different regions. The filter radius is shorter in strong current regions than the low current speed regions at the same latitude, which decreases with the increasing latitude on average. Secondly, the GOCE geoid has good signal to noise ratio at short wavelength than that of GRACE geoid, which enables the use of shorter optimal filter radius of corresponding GOCE based MDT than that of the earlier GRACE based MDT. Furthermore, shorter optimal filter radius of GOCE based MDT ensures the GOCE based MDT and its associated geostrophic currents retain more information on small spatial scales. Lastly, the GOCE-based geostrophic currents are better than that of GRACE-based results in middle and high latitude regions.
机译:重力场和稳态海洋环流探测器(GOCE)卫星任务在短空间尺度上以前所未有的精度测量地球的重力场,有望大大促进大地测量海洋平均动态地形(MDT)的研究。为了充分利用GOCE的优势并在全球和区域范围内精确确定MDT及其相关的地转流,我们必须量化GOCE派生的MDT的空间分辨率和GOCE的地转流检索能力。首先通过频谱方法从GOCE地球重力场模型(GO-CONS-GCF-2-TIM5)和高程海面高度模型(CNES-CLS2011_MSS)中检索全局MDT,可以有效地抑制遗漏误差。然后使用高斯滤波方法来抑制原始MDT结果的噪声。为了获得高斯滤波器的最佳空间滤波器半径,我们计算了浮标衍生的地转流与根据大地测量的MDT计算出的具有不同滤波半径的电流之间的RMS差。使上述获得的RMS差最小的那些滤波器半径是高斯滤波器半径的最佳选择。基于该滤波器半径确定策略,在区域,区域和全局区域中确定MDT的最佳滤波器半径。然后,将以上最佳MDT用于确定相应的地转电流场。最后,通过大地测量和浮标地转流数据之间的RMS差,相关系数和速度比例系数这三个统计因子,仔细研究了GOCE地转流的特征。 (1)在南北纬度大于40°,20°至40°,小于20°以及全球范围内的高纬度地区,GOCE MDT的最佳空间滤波半径为102 km,131 km,154 km和127 km范围分别比GRACE的范围好24 km,27 km,21 km和27 km。 (2)通过MDT采集的地转流与浮标数据的比较表明:1)在强流区域,通过MDT采集的地转流可以将浮标衍生的地转流的速度(速度幅值)解释为70%; 2)与GRACE和高度计数据相比,从GOCE和高度计数据推导出的地转电流速度更接近浮标数据。 (3)由两种不同的大地测量MDTs(GOCE和GRACE)得出的地转速度与浮标派生的速度的相关系数具有明显的空间特征。基于GOCE结果的相关系数在南极绕流区,北大西洋区和Agulhas区高于GRACE,而在赤道区则相反。 (4)在强地转流区域(除赤道区域外),由GOCE MDT计算得出的地转流速度与浮标派生的速度的RMS差通常小于GRACE。例如,GOCE结果的上述RMS差异分别比北大西洋和Agulhas地区的GRACE结果小16%和24%。首先,MDT的区域优化滤波器半径在不同区域有所不同。在相同纬度下,强电流区域的滤波器半径比低电流速度区域的滤波器半径短,平均而言,滤波器半径随纬度的增加而减小。其次,与GRACE大地水准面相比,GOCE大地水准面在短波长处具有良好的信噪比,这使得相应的基于GOCE的MDT的最佳滤波半径可以比早期的GRACE大中的DDT短。此外,基于GOCE的MDT的较短最佳滤波器半径可确保基于GOCE的MDT及其相关的地转流在较小的空间尺度上保留更多信息。最后,在中高纬度地区,基于GOCE的地转流要优于基于GRACE的地转流。

著录项

  • 来源
    《Oceanographic Literature Review》 |2015年第9期|2114-2115|共2页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号