...
【24h】

Wave and tidal power

机译:波浪和潮汐力量

获取原文
获取原文并翻译 | 示例
           

摘要

With large-scale development of offshore wind power and the increasing scale of power grid interconnection, more and more attention has been drawn to the stable operation of wind power units. When the wide area measurement system (WAMS) is applied to the power system, the time delay mainly occurs in the signal measurement and transmission of the power system. When 10MW wind turbines transmit information through complex communication network, time delay often exists, which leads to the degradation of performance and instability for system. This affects the normal operation of a wind farm. Therefore, in this paper, the distributed control problem of doubly fed wind turbines with input time delay is studied based on the Hamiltonian energy theory. Firstly, the Port-controlled Hamiltonian system with Dissipation (PCH-D) model is implemented with the Hamiltonian energy method. Then, the Casimir function is introduced into the PCH-D model of the single wind turbine system to stabilize the time delay. The wind turbine group is regarded as one network and the distributed control strategy is designed, so that the whole wind turbine cluster can remain stable given a time delay occurring in the range of 30-300 ms. Finally, simulation results show that the output power of the wind turbine cluster with input delay converges to the expected value rapidly and remains stable. Additionally, the system error caused by time delay is greatly reduced. This control method can effectively solve the problem of input time delay and improve the stability of the wind turbine cluster. Moreover, the method proposed in this paper can adopt the conventional time step of dynamic simulation, which is more efficient in calculation. This method has adaptability in transient stability analysis of large-scale power system, however, the third-order mathematical model used in this paper cannot be used to analyze the internal dynamics of the whole power converter.
机译:随着海上风电的大规模发展和电网互连的增加,越来越多地被吸引到风电机稳定的运行。当广域测量系统(WAMS)应用于电力系统时,时间延迟主要发生在电力系统的信号测量和传输中。当10MW风力涡轮机通过复杂通信网络传输信息时,通常存在时间延迟,这导致系统性能和不稳定性的劣化。这会影响风电场的正常运行。因此,在本文中,基于Hamiltonian能量理论研究了具有输入时间延迟的双馈风力涡轮机的分布式控制问题。首先,利用哈密顿能量法实现了具有耗散(PCH-D)模型的端口控制的汉密尔顿系统。然后,将CASIMIR功能引入单个风力涡轮机系统的PCH-D模型中以稳定时间延迟。风力涡轮机组被认为是一个网络,并且设计了分布式控制策略,使得整个风力涡轮机簇可以在30-300ms的范围内发生的时间延迟保持稳定。最后,仿真结果表明,带输入延迟的风力涡轮机簇的输出功率快速收敛到预期值并保持稳定。另外,大大减少了由时间延迟引起的系统错误。该控制方法可以有效地解决输入时间延迟的问题,提高风力涡轮机簇的稳定性。此外,本文提出的方法可以采用动态模拟的传统时间步长,在计算中更有效。该方法对大型电力系统的瞬态稳定性分析具有适应性,但本文中使用的三阶数学模型不能用于分析整个功率转换器的内部动态。

著录项

  • 来源
    《Oceanographic Literature Review》 |2020年第6期|1366-1370|共5页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号