首页> 外文期刊>Oceanographic Literature Review >Upper-ocean eddy heat flux across the antarctic circumpolar current in drake passage from observations: Time-mean and seasonal variability
【24h】

Upper-ocean eddy heat flux across the antarctic circumpolar current in drake passage from observations: Time-mean and seasonal variability

机译:沿南极环块电流的上海涡流热通量从观测到观测:时间均值和季节变异性

获取原文
获取原文并翻译 | 示例
           

摘要

Eddy heat flux plays a fundamental role in the Southern Ocean meridional overturning circulation, providing the only mechanism for poleward heat transport above the topography and below the Ekman layer at the latitudes of Drake Passage. Models and observations identify Drake Passage as one of a handful of hot spots in the Southern Ocean where eddy heat transport across the Antarctic Circumpolar Current (ACC) is enhanced. Quantifying this transport, however, together with its spatial distribution and temporal variability, remains an open question. This study quantifies eddy heat flux as a function of ACC streamlines using a unique 20-yr time series of upper-ocean temperature and velocity transects with unprecedented horizontal resolution. Eddy heat flux is calculated using both time-mean and time-varying streamlines to isolate the dynamically important across-ACC heat flux component. The time-varying streamlines provide the best estimate of the across-ACC component because they track the shifting and meandering of the ACC fronts. The depth-integrated (0-900 m) across-stream eddy heat flux is maximum poleward in the south flank of the Subantarctic Front (-0.10 ± 0.05 GW m~(-1)) and decreases toward the south, becoming statistically insignificant in the Polar Front, indicating heat convergence south of the Subantarctic Front. The time series provides an uncommon opportunity to explore the seasonal cycle of eddy heat flux. Poleward eddy heat flux in the Polar Front Zone is enhanced during austral autumn-winter, suggesting a seasonal variation in eddy-driven upwelling and thus the meridional overturning circulation.
机译:涡流热通量在南海经络倾覆循环中起着基本作用,为德雷克通道纬度的地形和ekman层下方提供了唯一的地形热传输机制。模型和观察识别德雷克通道作为南洋中少量热点之一,其中增强了南极环块电流(ACC)的涡流传输。然而,量化此运输以及其空间分布和时间变异性仍然是一个开放的问题。本研究量化涡流热通量作为ACC的功能,使用独特的20 - YR时间序列的上海温度和速度横切,具有前所未有的水平分辨率。使用时间平均值和时变的流线计算涡流热通量,以隔离动态重要的跨可线热量分量。时变简化线提供了跨越ACC组件的最佳估计,因为它们跟踪了ACC Fronts的转移和曲折。跨流涡流热通量的深度集成(0-900米)是下肢前部的南侧侧面的最大极端(-0.10±0.05 gw m〜(-1))并朝向南部减少,在统计上无关紧要极性前沿,指示小管道前沿的热量收敛。时间序列提供了探讨涡流热通量季节性循环的罕见机会。在澳秋季冬季,极地前区域的极地涡流热通量增强,暗示涡流升值的季节变化,从而进行了经络翻转循环。

著录项

  • 来源
    《Oceanographic Literature Review》 |2020年第10期|2085-2085|共1页
  • 作者单位

    Scripps Institution of Oceanography University of California San Diego La Jolla San Diego CA United States;

    Scripps Institution of Oceanography University of California San Diego La Jolla San Diego CA United States;

    Scripps Institution of Oceanography University of California San Diego La Jolla San Diego CA United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号