...
首页> 外文期刊>Optical and quantum electronics >Optimization and characterization of InGaAsN/GaAs quantum-well ridge laser diodes for high frequency operation
【24h】

Optimization and characterization of InGaAsN/GaAs quantum-well ridge laser diodes for high frequency operation

机译:用于高频工作的InGaAsN / GaAs量子阱脊形激光二极管的优化和表征

获取原文
获取原文并翻译 | 示例
           

摘要

Optimization and characterization of multiple InGaAsN/GaAs quantum-well laser diodes for high frequency operation are reported. From the modelling of the dilute nitride quantum well, we investigate how to design the structure to achieve a high frequency operation. The gain characteristics are optimized by incorporating the minimum amount of nitrogen in the well to obtain the emission at 1.3 mu m with a low transparency density and a high differential gain. We show that the number of wells must be adjusted to three to benefit of the best compromise between the threshold current and the differential gain. The effects of the cavity losses on the dynamic characteristics are evaluated and demonstrate the interest for high cavity losses to reach high relaxation frequency despite a lower characteristic temperature. An optimized structure has been realized and exhibits an emission at 1.34 mu m with a transparency current density of 642 A/cm(2) and a characteristic temperature T-0 similar to 80 K. Dynamic properties for ridge devices are evaluated from relative intensity noise measurements and small-signal modulation. A relaxation frequency as high as 7.4 GHz and a 9.7 GHz small-signal bandwidth are reported. We demonstrate transmission up to 10 Gb/s at 25 degrees C without penalty and bit error floor.
机译:报告了用于高频工作的多个InGaAsN / GaAs量子阱激光二极管的优化和特性。通过稀氮化物量子阱的建模,我们研究如何设计结构以实现高频操作。通过在井中掺入最少量的氮来优化增益特性,以低透明度和高差分增益获得1.3微米的发射。我们表明,必须将阱的数量调整为三个,以受益于阈值电流和差分增益之间的最佳折衷。评估了空腔损耗对动态特性的影响,并证明了尽管具有较低的特征温度,但仍需要高空腔损耗才能达到高松弛频率。已经实现了一种优化的结构,并在1.34μm处发射,透明电流密度为642 A / cm(2),特征温度T-0类似于80K。脊形器件的动态特性是通过相对强度噪声评估的测量和小信号调制。据报道,弛豫频率高达7.4 GHz,小信号带宽为9.7 GHz。我们展示了在25摄氏度下传输速率高达10 Gb / s的性能,并且没有损失和误码率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号