...
首页> 外文期刊>Optical and quantum electronics >The simulation on absorption properties of metamaterial/ GaAs/electrode layer hybrid structure based Terahertz photoconductive detector
【24h】

The simulation on absorption properties of metamaterial/ GaAs/electrode layer hybrid structure based Terahertz photoconductive detector

机译:基于太赫兹光电导探测器的超材料/ GaAs /电极层混合结构吸收特性的仿真

获取原文
获取原文并翻译 | 示例
           

摘要

Terahertz (THz) photodetectors have attracted great attention from scientists worldwide for their application in security checking, biomedical treatment and astronomical observation of remote stars and distant galaxies. As a typical THz detector, extrinsic GaAs based photoconductive detector is facing critical technical bottlenecks in the epitaxial growth of sufficiently thick and high-quality GaAs absorption layer. In this work, a novel THz photoconductive detector based on metamaterial/GaAs/electrode layer hybrid structure was designed and simulated. By setting the periodic split ring resonator (SRR) structure as 88m pitch with 8m width, the absorption peaks exist at the wavelength of about 142 and 367m, which originate from the resonant cavity and the SRR dipole resonance effect, and the novel device shows a significant enhancement compared with the conventional GaAs photoconductive detector. Thus, the necessary thickness of GaAs absorption-layer is largely reduced, and the resonant absorption peak can be modulated by changing the thickness of absorption layer. This work provides a novel device structure which can solve the critical epitaxial growth bottleneck of GaAs photoconductive detector and used for the astronomical observation, security check, etc.
机译:太赫兹(THz)光电探测器在安全检查,生物医学治疗以及遥远恒星和遥远星系的天文观测中的应用吸引了全世界科学家的极大关注。作为典型的THz检测器,基于外延GaAs的光电导检测器在足够厚且高质量的GaAs吸收层的外延生长中面临着关键的技术瓶颈。在这项工作中,设计并模拟了一种基于超材料/ GaAs /电极层混合结构的新型太赫兹光电导探测器。通过将周期裂环谐振器(SRR)结构设置为88m间距,8m宽度,吸收峰出现在大约142和367m的波长处,这是由于谐振腔和SRR偶极子谐振效应引起的,该新型器件显示出与传统的GaAs光电导检测器相比,显着增强。因此,大大减小了GaAs吸收层的必要厚度,并且可以通过改变吸收层的厚度来调节共振吸收峰。这项工作提供了一种新颖的器件结构,可以解决GaAs光电导探测器的关键外延生长瓶颈,并用于天文观测,安全检查等。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号