...
首页> 外文期刊>Optical and quantum electronics >Ultra-high-efficiency luminescent solar concentrator using superimposed colloidal quantum dots
【24h】

Ultra-high-efficiency luminescent solar concentrator using superimposed colloidal quantum dots

机译:超高效率发光太阳能聚光器,使用叠加胶体量子点

获取原文
获取原文并翻译 | 示例
           

摘要

The world energy crisis, as well as global warming, has intensified an urgent need for renewable energies. Solar radiation can be converted to electricity by solar cells readily; however, the high cost of photovoltaic systems has hindered its worldwide commercialization. Also, the solar cells cannot be integrated directly to skyscrapers. Therefore, luminescent solar concentrators have been developed. Here, we have proposed a novel and exciting structure for LSCs based on four different groups of QDs (generally superposition of QDs) with different sizes and materials to absorb photons from sunlight ranging from ultraviolet to near-infrared and then guide re-emitted photons to edge of LSC, which culminate in capturing photons by solar cells. We designed the QDs such that the absorption and emission spectra have minimum overlap leading to limited reabsorption losses. A Monte-Carlo ray-tracing simulation has been developed to model and evaluates the effectiveness of the proposed device. Then, we have optimized the QD's concentration and LSC geometry to achieve maximum optical efficiency. For different quantum yields ranging from 0.4 to 1, we have obtained theoretically super high optical efficiency of 11-31%. The optimization results show a 67.8% enhancement in optical flux gain leading to 3.72-times more concentrated photon flux demonstrating our device's commercialization potential. Besides, total absorbed photons, transparency, and ultimate fate of all photons were calculated. Finally, the proposed idea can be used to introduce a high-efficiency solar concentrator while extending the coverage of solar cells to make green energy.
机译:世界能源危机以及全球变暖,加大了对可再生能源的迫切需要。太阳能辐射可容易地通过太阳能电池转换为电力;然而,光伏系统的高成本阻碍了其全球商业化。此外,太阳能电池不能直接整合到摩天大楼。因此,已经开发了发光太阳能集中器。在这里,我们提出了基于四个不同的QDS(大致叠加的QDS)的LSCS的新颖和激动令人兴奋的结构,其具有不同的尺寸和材料,以吸收从阳光从紫外线到近红外线的光子,然后引导重新发射光子LSC的边缘,达到太阳能电池捕获光子。我们设计了QD,使得吸收和发射光谱具有最小重叠,导致测量损失有限。已经开发了Monte-Carlo射线跟踪模拟来模拟和评估所提出的装置的有效性。然后,我们优化了QD的浓度和LSC几何,以实现最大的光学效率。对于不同的量子产率,从0.4〜1范围内,我们已经获得了11-31%的理论上超高光学效率。优化结果显示光通量增强67.8%,导致3.72倍的浓缩光子通量,证明了我们的设备的商业化潜力。此外,计算了所有光子的全部吸收的光子,透明度和最终命运。最后,拟议的想法可用于引入高效太阳能集中器,同时延长太阳能电池的覆盖以使绿能成为绿色能量。

著录项

  • 来源
    《Optical and quantum electronics》 |2020年第6期|327.1-327.16|共16页
  • 作者单位

    Photonics and Nanocrystals Research Lab (PNRL) University of Tabriz Tabriz 5166614761 Iran Quantum Photonics Research Lab (QPRL) University of Tabriz Tabriz 5166614761 Iran;

    Photonics and Nanocrystals Research Lab (PNRL) University of Tabriz Tabriz 5166614761 Iran SP-EPT Lab ASEPE Company Industrial Park of Advanced Technologies Tabriz 5364196795 Iran;

    Quantum Photonics Research Lab (QPRL) University of Tabriz Tabriz 5166614761 Iran;

    Department of Statistics Faculty of Science and Literature University of Bitlis Eren Bitlis Turkey;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Solar cell; Luminescent solar concentration; Quantum dots; Superposition of QDs;

    机译:太阳能电池;发光太阳能浓度;量子点;QDS的叠加;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号