...
首页> 外文期刊>Organic Electronics >Magnetic field-driven spintronic logic gates in one-dimensional manganese phthalocyanine nanoribbons based molecular spintronic devices
【24h】

Magnetic field-driven spintronic logic gates in one-dimensional manganese phthalocyanine nanoribbons based molecular spintronic devices

机译:一维基于锰酞菁纳米带的分子自旋电子器件中的磁场驱动自旋电子逻辑门

获取原文
获取原文并翻译 | 示例
           

摘要

Along with the development of molecular electronics and spintronics, how to realize logic operation in nanoscale molecular devices has been a key issue. Thus it is essential to achieve basic logic gates in a small scale, which are the fundamental elements of digital circuits. By using nonequilibrium Green's function method and density functional theory, we propose an ideal candidate: one-dimensional (1D) manganese phthalocyanine nanoribbons (MnPcNRs), with half-metallic characteristics for making spintronic logic gates. Firstly, we calculate the spin transport properties of 1D MnPcNRs, in which the spin orientation of different areas can be changed by applying magnetic fields. Nearly 100% spin-polarized current can be generated and tuned by a proper magnetic configuration in these two-terminal MnPcNRs devices. Moreover, giant magnetoresistance, negative different resistance and dual-orientation spin rectification effects can be also detected in these devices. These unique transport properties are attributed to the intrinsic transmission selection rule of the wave function of spin subbands near the Fermi level in 1D MnPcNRs. More interestingly, the current-voltage relationships under the control of magnetic configuration of different areas in MnPcNR devices can be used to design spin logic devices. It is worth mentioning that the design proposal we suggested realizes to implement multiple logic operations in a single device. Our result suggests the application potential of 1D MnPcNRs in future nanoelectronics, and also provides a feasible solution to design spintronic integrated circuit in atomic scale.
机译:随着分子电子学和自旋电子学的发展,如何在纳米级分子器件中实现逻辑运算已成为关键问题。因此,至关重要的是要实现小规模的基本逻辑门,这是数字电路的基本要素。通过使用非平衡格林函数方法和密度泛函理论,我们提出了一个理想的候选对象:一维(1D)锰酞菁纳米带(MnPcNRs),具有半金属特性,用于制造自旋电子逻辑门。首先,我们计算了一维MnPcNRs的自旋输运性质,其中可以通过施加磁场来改变不同区域的自旋取向。在这些两端MnPcNRs器件中,通过适当的磁性配置,可以生成和调整接近100%的自旋极化电流。此外,在这些器件中还可以检测到巨大的磁阻,负的不同电阻和双向取向自旋整流效应。这些独特的传输特性归因于一维MnPcNRs中费米能级附近自旋子带的波函数的固有传输选择规则。更有趣的是,在MnPcNR器件中不同区域的磁配置控制下的电流-电压关系可用于设计自旋逻辑器件。值得一提的是,我们建议的设计建议可以在单个设备中实现多个逻辑运算。我们的结果表明一维MnPcNRs在未来的纳米电子学中的应用潜力,并且为设计原子级自旋电子学集成电路提供了可行的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号