...
首页> 外文期刊>Physical review >Strength and deformation of shocked diamond single crystals: Orientation dependence
【24h】

Strength and deformation of shocked diamond single crystals: Orientation dependence

机译:冲击金刚石单晶的强度和变形:取向依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111} <110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.
机译:了解和量化金刚石单晶的强度或弹性极限具有相当大的科学和技术重要性,并且一直是长期存在的理论和实验兴趣的主题。为了检查晶体各向异性对冲击金刚石单晶强度和变形的影响,进行了板冲击实验,以测量沿[110]和[111]晶体取向高达〜120 GPa的各种弹性冲击应力下的波剖面。使用激光干涉测量法,测量了金刚石样品中的粒子速度历史和冲击速度,并将其与先前发布的沿[100]方向的冲击压缩的类似测量结果进行了比较。所有三个方向的波剖面都显示出较大的弹性波振幅,然后是随时间变化的非弹性变形。根据测得的波轮廓,在特征明确的单轴应变载荷条件下确定弹性极限。对于较高的弹性冲击应力(针对弹性钻石响应所达到的应力),在[110]和[111]方向上测得的弹性波振幅较低,这与先前对[100]钻石所报告的结果一致。对于每个方向,都确定了{111} <110>滑移系统上的最大分辨剪切应力(MRSS),显示出显着的方向依赖性。 [100]和[110]方向(〜33 GPa)的MRSS值是理论估计值的25%-30%; [111]方向的MRSS值要低得多(〜23 GPa)。我们的结果表明,MRSS强烈依赖于垂直于{111}平面的应力分量或分辨的法向应力(RNS),这表明RNS在抑制非弹性变形的发生中起关键作用。在较高的峰值应力下较低的弹性波振幅和RNS的作用与非弹性变形的典型位错滑动机制不一致,这表明冲击脆性固体具有非弹性响应特性。目前的结果表明,使用传统的各向同性方法无法描述金刚石单晶的弹性极限(或材料强度),并且无法使用典型的可塑性模型来描述金刚石的非弹性变形。对超出弹性极限的测量波剖面进行分析(包括表征峰态),需要进行数值模拟,该模拟必须包含随时间变化的各向异性非弹性变形响应。开发用于钻石的这种材料描述是重要的需求。

著录项

  • 来源
    《Physical review》 |2018年第10期|104106.1-104106.9|共9页
  • 作者单位

    Institute for Shock Physics and Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA;

    Institute for Shock Physics and Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA;

    Institute for Shock Physics and Department of Physics and Astronomy, Washington State University, Pullman, Washington 99164, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号