...
首页> 外文期刊>Physical review >Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces
【24h】

Phonon-coupled ultrafast interlayer charge oscillation at van der Waals heterostructure interfaces

机译:范德华异质结构界面处声子耦合的超快层间电荷振荡

获取原文
获取原文并翻译 | 示例
           

摘要

Van der Waals (vdW) heteroslruetures of transition-metal dichalcogenide (TMD) semiconductors are central not only for fundamental science, but also for electro- and optical-device technologies where the inlerfacial charge transfer is a key factor. Ultrafast interfacial charge dynamics has been intensively studied, however, the atomic-scale insights into the effects of the electron-phonon (e-p) coupling are still lacking. In this paper, using time dependent ab initio nonadiabatic molecular dynamics, we study the ultrafast interfacial charge transfer dynamics of two different TMD heterostructures MoS_2/WS_2 and MoSe_2/WSe_2, which have similar band structures but different phonon frequencies. We found that MoSe_2/WSe_2 has softer phonon modes compared to MoS_2/WS_2, and thus phonon-coupled charge oscillation can be excited with sufficient phonon excitations at room temperature. In contrast, for MoS_2/WS_2. phonon-coupled interlayer charge oscillations are not easily excitable. Our study provides an atomic level understanding on how the phonon excitation and e-p coupling affect the interlayer charge transfer dynamics, which is valuable for both the fundamental understanding of ultrafast dynamics at vdW hetero-interfaces and the design of novel quasi-two-dimensional devices for optoelectronic and photovoltaic applications.
机译:过渡金属二卤化碳(TMD)半导体的范德华(vdW)异质结构不仅对于基础科学至关重要,而且对于电子和光学设备技术也很重要,在这些技术中,不导电的电荷转移是一个关键因素。人们已经对超快界面电荷动力学进行了深入研究,但是,仍然缺乏对电子-声子(e-p)耦合效应的原子尺度了解。在本文中,使用时间依赖性从头算绝非绝热分子动力学,我们研究了两种不同的TMD异质结构MoS_2 / WS_2和MoSe_2 / WSe_2的超快界面电荷转移动力学,它们具有相似的能带结构,但具有不同的声子频率。我们发现,与MoS_2 / WS_2相比,MoSe_2 / WSe_2具有更柔和的声子模式,因此在室温下可以通过足够的声子激发来激发声子耦合电荷振荡。相反,对于MoS_2 / WS_2。声子耦合的层间电荷振荡不容易激发。我们的研究提供了关于声子激发和ep耦合如何影响层间电荷转移动力学的原子级理解,这对于vdW异质界面超快动力学的基本理解和新颖的准二维器件设计均具有重要价值。光电和光伏应用。

著录项

  • 来源
    《Physical review》 |2018年第20期|205417.1-205417.9|共9页
  • 作者单位

    ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

    Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China;

    Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China;

    Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA;

    Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA;

    ICQD/Hefei National Laboratory for Physical Sciences at Microscale, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China,Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA,Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号