...
首页> 外文期刊>Physical review >Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics
【24h】

Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics

机译:腔辅助费米介观传输:相干和耗散动力学。

获取原文
获取原文并翻译 | 示例
           

摘要

We study the interplay between charge transport and light-matter interactions in a confined geometry by considering an open, mesoscopic chain of two-orbital systems resonantly coupled to a single bosonic mode close to its vacuum state. We introduce and benchmark different methods based on self-consistent solutions of nonequilibrium Green's functions and numerical simulations of the quantum master equation, and derive both analytical and numerical results. It is shown that in the dissipative regime where the cavity photon decay rate is the largest parameter, the light-matter coupling is responsible for a steady-state current enhancement scaling with the cooperativity parameter. We further identify different regimes of interest depending on the ratio between the cavity decay rate and the electronic bandwidth. Considering the situation where the lower band has a vanishing bandwidth, we show that for a high-finesse cavity, the properties of the resonant Bloch state in the upper band are transferred to the lower one. giving rise to a delocalized state along the chain. Conversely, in the dissipative regime with low-cavity quality factors, we find that the current enhancement is due to a collective decay of populations from the upper to the lower band.
机译:我们通过考虑一个共振的耦合到接近其真空状态的单个玻色子模式的双轨道系统的开放,介观链,研究了密闭几何结构中电荷传输和光-物质相互作用之间的相互作用。基于非平衡格林函数的自洽解和量子主方程的数值模拟,我们引入了不同的方法并进行了基准测试,并得出了解析和数值结果。结果表明,在耗散状态下,腔体光子的衰减率是最大的参数,光-质耦合是由协同系数决定稳态电流增强的尺度。我们根据腔衰变速率和电子带宽之间的比率进一步确定感兴趣的不同机制。考虑到较低频段的带宽逐渐消失的情况,我们表明,对于高精细腔,较高频段的共振Bloch态的特性将转移到较低频段。沿链产生了一个离域状态。相反,在具有低腔质量因数的耗散状态下,我们发现当前的增强是由于人口从上到下的集体衰减所致。

著录项

  • 来源
    《Physical review》 |2018年第20期|205303.1-205303.24|共24页
  • 作者单位

    IPCMS(UMR 7504) and ISIS (I I MR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France;

    IPCMS(UMR 7504) and ISIS (I I MR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France;

    IPCMS(UMR 7504) and ISIS (I I MR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France;

    Max Planck Institute for the Science of Light, Staudtstraβe 2, D-91058 Erlangen, Germany;

    IPCMS(UMR 7504) and ISIS (I I MR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号