...
首页> 外文期刊>Physical review >Charge partitioning and anomalous hole doping in Rh-doped Sr_2IrO_4
【24h】

Charge partitioning and anomalous hole doping in Rh-doped Sr_2IrO_4

机译:Rh掺杂Sr_2IrO_4中的电荷分配和异常空穴掺杂

获取原文
获取原文并翻译 | 示例
           

摘要

The simultaneous presence of sizable spin-orbit interactions and electron correlations in iridium oxides has led to predictions of novel ground states including Dirac semimetals, Kitaev spin liquids, and superconductivity. Electron and hole doping studies of spin-orbit assisted Mott insulator Sr_2IrO_4 are being intensively pursued due to extensive parallels with the La_2CuO_4 parent compound of cuprate superconductors. In particular, the mechanism of charge doping associated with replacement of Ir with Rh ions remains controversial with profound consequences for the interpretation of electronic structure and transport data. Using x-ray absorption near edge structure measurements at the Rh L, K, and Ir L edges we observe anomalous evolution of charge partitioning between Rh and Ir with Rh doping. The partitioning of charge between Rh and Ir sites progresses in a way that holes are initially doped into the J_(eff) = 1/2 band at low x only to be removed from it at higher x values. This anomalous hole doping naturally explains the reentrant insulating phase in the phase diagram of Sr_2Ir_1Rh_xO_4 and ought to be considered when searching for superconductivity and other emergent phenomena in iridates doped with Ad elements.
机译:氧化铱中同时存在大量自旋轨道相互作用和电子相关性,从而导致对新型基态的预测,包括狄拉克半金属,基塔耶夫自旋液体和超导性。自旋轨道辅助的Mott绝缘子Sr_2IrO_4的电子和空穴掺杂研究由于与铜酸盐超导体的La_2CuO_4母体化合物具有广泛的相似性而得到了广泛的研究。尤其是,与用Rh离子取代Ir相关的电荷掺杂机理仍存在争议,对电子结构和传输数据的解释将产生深远的影响。使用在Rh L,K和Ir L边缘的边缘结构附近的X射线吸收测量,我们观察到Rh掺杂后Rh和Ir之间的电荷分配异常演变。 Rh和Ir位点之间的电荷分配以一种方式进行:首先在低x处将空穴掺杂到J_(eff)= 1/2带中,然后在高x值处将其从中除去。这种异常的空穴掺杂自然地在Sr_2Ir_1Rh_xO_4的相图中解释了可重入的绝缘相,当在掺杂有Ad元素的铱酸盐中寻找超导性和其他出现的现象时,应予以考虑。

著录项

  • 来源
    《Physical review》 |2017年第6期|060407.1-060407.5|共5页
  • 作者单位

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA,National High Magnetic Field Laboratory (NHMFL), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA,Department of Physics, Washington University, St. Louis, Missouri 63130, USA,Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA;

    Department of Physics, University of Colorado-Boulder, Boulder, Colorado 80309, USA;

    Department of Physics, University of Colorado-Boulder, Boulder, Colorado 80309, USA;

    Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany;

    Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号