...
首页> 外文期刊>Physical review >Proposal for realizing the quantum spin Hall phase in a gapped graphene bilayer
【24h】

Proposal for realizing the quantum spin Hall phase in a gapped graphene bilayer

机译:关于在有间隙的石墨烯双层中实现量子自旋霍尔相的建议

获取原文
获取原文并翻译 | 示例
           

摘要

Quantum spin Hall (QSH) insulators with gapless edge states have potential applications in designing low-dissipation devices. In spite of many predictions, to verify the QSH phase in graphene layered materials experimentally is still difficult due to the obstacle in achieving spin-orbit coupling strong enough. We propose a Rashba system of graphene bilayer gapped by dielectric layers and show it can host a valley-polarized QSH phase even when the Rashba interaction approached zero. Such a system exhibits asymmetric topological quantum phase transitions under opposite interlayer biases, due to the dielectric-potential induced inversion asymmetry in the absence of interlayer bias. Specifically, the quantum valley Hall phase exists in zigzag-edged nanoribbons under the bias in one direction but is absent under the reverse bias. These topological phenomena can be well understood by the competition among the dielectric-induced potential, Rashba interaction, and interlayer bias in modulating the bulk band gap. Moreover, the phase diagram is given and the corresponding phase boundaries are derived analytically. Our findings provide a possible way to detect the QSH-related asymmetric topological quantum phenomena in graphene bilayer based on the current experimental technology.
机译:具有无间隙边缘状态的量子自旋霍尔(QSH)绝缘子在设计低耗散器件方面具有潜在的应用。尽管有许多预测,但由于实现自旋轨道耦合足够强的障碍,仍然难以通过实验验证石墨烯层状材料中的QSH相。我们提出了由介电层间隙填充的石墨烯双层的Rashba系统,并表明即使Rashba相互作用接近零,它也可以具有谷极化QSH相。由于在不存在层间偏置的情况下介电势引起的反型不对称,这种系统在相反的层间偏置下表现出不对称的拓扑量子相变。具体地,在一个方向上的偏压下,在锯齿形边缘的纳米带中存在量子谷霍尔相,而在反向偏压下则不存在。这些拓扑现象可以通过介电感应电势,Rashba相互作用和调制体带隙中的层间偏压之间的竞争来很好地理解。此外,给出了相图,并通过分析得出了相应的相界。我们的发现提供了一种基于当前实验技术检测石墨烯双层中与QSH相关的不对称拓扑量子现象的可能方法。

著录项

  • 来源
    《Physical review》 |2016年第20期|205427.1-205427.6|共6页
  • 作者

    Xuechao Zhai; Guojun Jin;

  • 作者单位

    Information Physics Research Center, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;

    National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号