...
首页> 外文期刊>Physical review >Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells
【24h】

Insight into the collective vibrational modes driving ultralow thermal conductivity of perovskite solar cells

机译:洞悉驱动钙钛矿太阳能电池超低导热率的集体振动模式

获取原文
获取原文并翻译 | 示例
           

摘要

The past few years have witnessed a rapid evolution of hybrid organic-inorganic perovskite solar cells as an unprecedented photovoltaic technology with both relatively low cost and high-power conversion. The fascinating physical and chemical properties of perovskites are benefited from their unique crystal structures represented by the general chemical formula AMX_3, where the A cations occupy the hollows formed by the MX_3 octahedra and thus balance the charge of the entire network. Despite a vast amount of theoretical and experimental investigations have been dedicated to the structural stability, electrical, and optical properties of hybrid halide perovskite materials in relation to their applications in solar cells, the thermal transport property, another critical parameter to the design and optimization of relevant solar cell modules, receives less attention. In this paper, we evaluate the lattice thermal conductivity of a representative methylammonium lead triiodide perovskite (CH_3NH_3PbI_3) with direct nonequilibrium ab initio molecular dynamics simulation. Resorting to full first-principles calculations, we illustrate the details of the mysterious vibration of the methylammonium cluster (CH_3NH_3~+) and present an unambiguous picture of how the organic cluster interacting with the inorganic cage and how the collective motions of the organic cluster drags the thermal transport, which provide fundamental understanding of the ultralow thermal conductivity of CH_3NH_3PbI_3. We also reveal the strongly localized phonons associated with the internal motions of the CH_3NH_3~+ cluster, which contribute little to the total thermal conductivity. The importance of the CH_3NH_3~+ cluster to the structural instability is also discussed in terms of the unconventional dispersion curves by freezing the partial freedoms of the organic cluster. These results provide more quantitative description of organic-inorganic interaction and coupling dynamics from accurate first-principles calculations, which are expected to underpin the development of emerging photovoltaic devices.
机译:在过去的几年中,混合有机-无机钙钛矿太阳能电池作为一种前所未有的光伏技术迅速发展,具有相对较低的成本和较高的功率转换。钙钛矿的引人入胜的物理和化学性质得益于它们由通用化学式AMX_3表示的独特晶体结构,其中A阳离子占据了MX_3八面体形成的空腔,从而平衡了整个网络的电荷。尽管进行了大量的理论和实验研究,但仍致力于混合卤化物钙钛矿材料的结构稳定性,电学和光学性能及其在太阳能电池中的应用,传热性能,这是设计和优化H2O2的另一个关键参数。相关的太阳能电池模块,受到的关注较少。在本文中,我们通过直接的非平衡从头算分子动力学模拟,评估了具有代表性的甲基碘化三碘化铅钙钛矿(CH_3NH_3PbI_3)的晶格热导率。借助完整的第一性原理计算,我们说明了甲基铵团簇(CH_3NH_3〜+)的神秘振动的细节,并给出了有机团簇如何与无机笼子相互作用以及有机团簇的集体运动如何拖动的清晰画面。热传输,这提供了对CH_3NH_3PbI_3的超低导热率的基本了解。我们还揭示了与CH_3NH_3〜+团簇的内部运动相关的强局部声子,它们对总热导率的贡献很小。还通过冻结有机团簇的部分自由度,根据非常规的分散曲线,讨论了CH_3NH_3〜+团簇对结构不稳定性的重要性。这些结果从准确的第一性原理计算中提供了更多的有机-无机相互作用和耦合动力学的定量描述,这有望为新兴的光伏器件的发展提供基础。

著录项

  • 来源
    《Physical review》 |2016年第11期|115427.1-115427.10|共10页
  • 作者单位

    Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52062 Aachen, Germany;

    Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany;

    Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany;

    Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany;

    Aachen Institute for Advanced Study in Computational Engineering Science (AICES), RWTH Aachen University, 52062 Aachen, Germany,Institute of Mineral Engineering, Division of Materials Science and Engineering, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52064 Aachen, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号