...
首页> 外文期刊>Physical review >Strain-induced magnetic phase transition in SrCoO_(3-δ) thin films
【24h】

Strain-induced magnetic phase transition in SrCoO_(3-δ) thin films

机译:SrCoO_(3-δ)薄膜中的应变感应磁相变

获取原文
获取原文并翻译 | 示例
           

摘要

It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO_(3-δ) (δ < 0.2) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to an antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic-to-antiferromagnetic phase transition in SrCoO_(3-δ) films grown on DyScO_3 substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO_3 substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Neel temperatures between T_N ~ 135 ± 10 K and ~325 ± 10 K, depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO_(3-δ) thin films under large epitaxial strain.
机译:众所周知,无论是在常压下还是在适度应变下的薄膜中,立方晶系SrCoO_(3-δ)(δ<0.2)都是铁磁性金属。但是,最近的理论工作表明,在伴随金属-绝缘体转变的大应变下,可能发生向反铁磁结构的磁性相变。我们已经观察到,在DyScO_3衬底上生长的SrCoO_(3-δ)薄膜中,由于应变引起的铁磁-反铁磁相变,与在SrTiO_3衬底上具有较低拉伸应变的铁磁膜相比,提供了大的外延拉伸应变。磁力计结果证明了反铁磁自旋相关性的存在,中子衍射实验提供了一个Ne型温度介于T_N〜135±10 K和〜325±10 K之间的G型反铁磁结构的直接证据,具体取决于样品中的氧含量。因此,我们的数据通过实验证实了大外延应变下SrCoO_(3-δ)薄膜的应变诱导的磁相转变为反铁磁态。

著录项

  • 来源
    《Physical review》 |2015年第14期|140405.1-140405.5|共5页
  • 作者单位

    School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia,The Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia;

    School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia;

    School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia;

    Spintronic and Electronic Materials Group, Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia;

    The Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia;

    Spintronic and Electronic Materials Group, Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales 2500, Australia;

    School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia;

    The Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia,Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, China;

    School of Materials Science and Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia;

    School of Physics, The University of New South Wales, Sydney, New South Wales 2052, Australia,The Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    antiferromagnetics; magnetic properties of monolayers and thin films;

    机译:反铁磁单层和薄膜的磁性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号