...
首页> 外文期刊>Physical review >Atomic-resolution studies of epitaxial strain release mechanisms in La_(1.85)Sr_(0.15)CuO_4/La_(0.67)Ca_(0.33)MnO_3 superlattices
【24h】

Atomic-resolution studies of epitaxial strain release mechanisms in La_(1.85)Sr_(0.15)CuO_4/La_(0.67)Ca_(0.33)MnO_3 superlattices

机译:La_(1.85)Sr_(0.15)CuO_4 / La_(0.67)Ca_(0.33)MnO_3超晶格中外延应变释放机理的原子分辨率研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper we present an atomic-resolution electron microscopy study of superlattices (SLs) where the colossal magnetoresistant manganite La_(0.67)Ca_(0.33)MnO_3 (LCMO) and the high critical temperature superconducting cuprate La_(0.85)Sr_(0.15)CuO_4 (LSCO) are combined. Although good quality epitaxial growth can be achieved, both the choice of substrate and the relatively large lattice mismatch between these materials (around 2%) have a significant impact on the system properties [Phys. C 468, 991 (2008); Nature (London) 394, 453 (1998)]. Our samples, grown by pulsed laser deposition, are epitaxial and exhibit high structural quality. By means of cutting-edge electron microscopy and spectroscopy techniques we still find that the epitaxial strain is accommodated by a combination of defects, such as interface steps and antiphase boundaries in the manganite. These defects result in inhomogeneous strain fields through the samples. Also, some chemical inhomogeneities are detected, up to the point that novel phases nucleate. For example, at the LCMO/LSCO interface the ABO_3-type manganite adopts a tetragonal LSCO-like structure forming localized layers that locally resemble the composition of La_(2/3)Ca_(4/3)MnO_4. Structural distortions are detected in the cuprate as well, which may extend over lateral distances of several unit cells. Finally, we also analyze the influence of the substrate-induced strain by examining superlattices grown on two different substrates: (LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7) (LSAT) and LaSrAlO_4 (LSAO). We observe that SLs grown on LSAT, which are nonsuperconducting, present reduced values of the c axis compared to superlattices grown on LSAO (which are fully superconducting). This finding points to the fact that the proper distance between copper planes in LSCO is essential in obtaining superconductivity in cuprates.
机译:在本文中,我们提出了超晶格(SLs)的原子分辨率电子显微镜研究,其中巨大磁阻锰矿La_(0.67)Ca_(0.33)MnO_3(LCMO)和高临界温度超导铜酸盐La_(0.85)Sr_(0.15)CuO_4 (LSCO)被合并。尽管可以实现高质量的外延生长,但是衬底的选择以及这些材料之间相对较大的晶格失配(约2%)都对系统性能产生重大影响。 C 468,991(2008); Nature(London)394,453(1998)。通过脉冲激光沉积生长的我们的样品是外延的,并显示出很高的结构质量。通过尖端的电子显微镜和光谱技术,我们仍然发现,外延应变是由缺陷的组合来适应的,例如锰矿中的界面台阶和反相边界。这些缺陷导致整个样品的应变场不均匀。同样,可以检测到某些化学不均匀性,直至新相成核为止。例如,在LCMO / LSCO界面处,ABO_3型锰矿采用四方LSCO状结构,形成局部类似于La_(2/3)Ca_(4/3)MnO_4组成的局部化层。同样在铜酸盐中检测到结构变形,该变形可能会延伸到几个单位单元的横向距离。最后,我们还通过检查在两种不同衬底上生长的超晶格来分析衬底诱导应变的影响:(LaAlO_3)_(0.3)(Sr_2AlTaO_6)_(0.7)(LSAT)和LaSrAlO_4(LSAO)。我们观察到,与在LSAO上生长的超晶格(完全超导)相比,在LSAT上生长的SL是非超导的,其c轴的值减小。这一发现指出了这样一个事实,即LSCO中铜平面之间的适当距离对于获得铜酸盐中的超导性至关重要。

著录项

  • 来源
    《Physical review》 |2015年第20期|205132.1-205132.9|共9页
  • 作者单位

    Departamemo de Fisica Aplicada Ⅲ, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain,Centro Nacional de Microscopia Electronica, Universidad Complutense de Madrid, Spain;

    Department of Physics, Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

    Departamento de Quimica Inorganica, Universidad Complutense de Madrid, Spain,Centro Nacional de Microscopia Electronica, Universidad Complutense de Madrid, Spain;

    Department of Physics, Fribourg Center for Nanomaterials, University of Fribourg, Chemin du Musee 3, CH-1700 Fribourg, Switzerland;

    Departamemo de Fisica Aplicada Ⅲ, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    superlattices; multilayers, superlattices, heterostructures; magnetic properties of interfaces (multilayers, superlattices, heterostructures);

    机译:超晶格多层;超晶格;异质结构;界面的磁性(多层;超晶格;异质结构);

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号