...
首页> 外文期刊>Physical review >Controlled tunneling-induced dephasing of Rabi rotations for high-fidelity hole spin initialization
【24h】

Controlled tunneling-induced dephasing of Rabi rotations for high-fidelity hole spin initialization

机译:高保真空穴自旋初始化的受控隧穿引起的Rabi旋转移相

获取原文
获取原文并翻译 | 示例
           

摘要

We report the subpicosecond initialization of a single heavy hole spin in a self-assembled quantum dot with >98.5% fidelity and without external magnetic field. Using an optically addressable charge and spin storage device we tailor the relative electron and hole tunneling escape time scales from the dot and simultaneously achieve high-fidelity initialization, long hole storage times, and high-efficiency readout via a photocurrent signal. We measure electric-field-dependent Rabi oscillations of the neutral and charged exciton transitions in the ultrafast tunneling regime and demonstrate that tunneling-induced dephasing (TID) of excitonic Rabi rotations is the major source for the intensity damping of Rabi oscillations in the low Rabi frequency, low temperature regime. Our results are in very good quantitative agreement with quantum-optical simulations revealing that TID can be used to precisely measure tunneling escape times and extract changes in the Coulomb binding energies for different charge configurations of the quantum dot. Finally, we demonstrate that for subpicosecond electron tunneling escape, TID of a coherently driven exciton transition facilitates ultrafast hole spin initialization with near-unity fidelity.
机译:我们报告了自组装量子点中单个重空穴自旋的亚皮秒初始化,保真度大于98.5%,并且没有外部磁场。使用可光学寻址的电荷和自旋存储设备,我们可以从点中定制相对的电子和空穴隧穿逃逸时间尺度,并同时通过光电流信号实现高保真初始化,长空穴存储时间和高效读取。我们在超快隧穿条件下测量中性和带电激子跃迁的电场依赖性拉比振荡,并证明激子拉比旋转的隧穿诱导相移(TID)是低拉比中拉比振荡强度衰减的主要来源频率,低温状态。我们的结果与量子光学模拟非常定量地吻合,揭示了TID可用于精确测量隧道逃逸时间并提取不同量子点电荷构型的库仑结合能的变化。最后,我们证明了对于亚皮秒电子隧穿逃逸而言,相干驱动的激子跃迁的TID促进了具有近统一保真度的超快空穴自旋初始化。

著录项

  • 来源
    《Physical review》 |2015年第11期|115306.1-115306.7|共7页
  • 作者单位

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany,E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany,E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA;

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

    Walter Schottky Institut and Physik-Department, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    quantum dots; quantum dots; quantum well devices (quantum dots, quantum wires, etc.);

    机译:量子点;量子点;量子阱设备(量子点;量子线等);

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号