首页> 外文期刊>Physical review >Superlubric-pinned transition in sliding incommensurate colloidal monolayers
【24h】

Superlubric-pinned transition in sliding incommensurate colloidal monolayers

机译:滑动不相称的胶体单层中的超润滑固定过渡

获取原文
获取原文并翻译 | 示例
           

摘要

Two-dimensional (2D) crystalline colloidal monolayers sliding over a laser-induced optical lattice providing the periodic "corrugation" potential recently emerged as a new tool for the study of friction between ideal crystal surfaces. Here, we focus in particular on static friction, the minimal sliding force necessary to depin one lattice from the other. If the colloid and the optical lattices are mutually commensurate, the colloid sliding is always pinned by static friction; however, when they are incommensurate, the presence or absence of pinning can be expected to depend upon the system parameters, like in one-dimensional (1D) systems. If a 2D analogy to the mathematically established Aubry transition of one-dimensional systems were to hold, an increasing periodic corrugation strength U_0 should turn an initially free-sliding, superlubric colloid into a pinned state, where the static friction force goes from zero to finite through a well-defined dynamical phase transition. We address this problem by the simulated sliding of a realistic model 2D colloidal lattice, confirming the existence of a clear and sharp superlubric-pinned transition for increasing corrugation strength. Unlike the 1D Aubry transition, which is continuous, the 2D transition exhibits a definite first-order character, with a jump of static friction. With no change of symmetry, the transition entails a structural character, with a sudden increase of the colloid-colloid interaction energy, accompanied by a compensating downward jump of the colloid-corrugation energy. The transition value for the corrugation amplitude U_0 depends upon the misalignment angle 8 between the optical and the colloidal lattices, superlubricity surviving until larger corrugations for angles away from the energetically favored orientation, which is itself generally slightly misaligned, as shown in recent work. The observability of the superlubric-pinned colloid transition is proposed and discussed.
机译:二维(2D)晶体胶体单层在激光诱导的光学晶格上滑动,提供周期性的“波纹”势,最近成为研究理想晶体表面之间摩擦的一种新工具。在这里,我们特别关注静摩擦,这是将一个晶格彼此固定所需的最小滑动力。如果胶体和光学晶格彼此相称,则胶体的滑动总是受到静摩擦的约束;但是,当它们不相称时,钉扎的存在与否将取决于系统参数,例如在一维(1D)系统中。如果要保持与一维系统数学上建立的Aubry过渡的二维相似性,则增加的周期性波纹强度U_0应该会使最初自由滑动的超润滑胶体变成固定状态,其中静摩擦力从零变为有限通过定义明确的动态相变。我们通过模拟现实模型2D胶体晶格的模拟滑动来解决此问题,从而确认了存在清晰且尖锐的超级润滑油固定过渡层,以提高波纹强度。与连续的1D Aubry过渡不同,2D过渡具有确定的一阶特征,并带有静摩擦跃变。在不改变对称性的情况下,过渡具有结构特征,胶体-胶体相互作用能突然增加,并伴随着胶体-波纹能的向下补偿。波纹幅度U_0的过渡值取决于光学和胶体晶格之间的未对准角8,超润滑性一直存在,直到较大的波纹离开背离于能量有利取向的角度为止,而这种取向本身通常略微未对准,如最近的工作所示。提出并讨论了超润滑固定胶体转变的可观察性。

著录项

  • 来源
    《Physical review》 |2015年第13期|134306.1-134306.8|共8页
  • 作者单位

    International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy;

    International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy ,CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy;

    Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy;

    International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy;

    International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy ,CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy ,Dipartimento di Fisica, Universita degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy;

    International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy ,CNR-IOM Democritos National Simulation Center, Via Bonomea 265, 34136 Trieste, Italy ,International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atomic scale friction; structural transitions in nanoscale materials; small amplitude oscillatory shear (dynamic mechanical analysis); colloids;

    机译:原子尺度摩擦纳米级材料的结构转变;小振幅振荡剪切(动态力学分析);胶体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号