...
首页> 外文期刊>Physical review >Origin of the turn-on temperature behavior in WTe_2
【24h】

Origin of the turn-on temperature behavior in WTe_2

机译:WTe_2中开启温度行为的起源

获取原文
获取原文并翻译 | 示例
           

摘要

A hallmark of materials with extremely large magnetoresistance (XMR) is the transformative turn-on temperature behavior: when the applied magnetic field H is above certain value, the resistivity versus temperature ρ(T) curve shows a minimum at a field dependent temperature T~*, which has been interpreted as a magnetic-field-driven metal-insulator transition or attributed to an electronic structure change. Here, we demonstrate that ρ(T) curves with turn-on behavior in the newly discovered XMR material WTe_2 can be scaled as MR ~ (H/ρ_0)~m with m ≈ 2 and ρ_0 being the resistivity at zero field. We obtained experimentally and also derived from the observed scaling the magnetic field dependence of the turn-on temperature T~* ~ (H - H_c)~v with v ≈ 1/2, which was earlier used as evidence for a predicted metal-insulator transition. The scaling also leads to a simple quantitative expression for the resistivity ρ~* ≈ 2ρ_0 at the onset of the XMR behavior, which fits the data remarkably well. These results exclude the possible existence of a magnetic-field-driven metal-insulator transition or significant contribution of an electronic structure change to the low-temperature XMR in WTe_2. This work resolves the origin of the turn-on behavior observed in several XMR materials and also provides a general route for a quantitative understanding of the temperature dependence of MR in both XMR and non-XMR materials.
机译:具有极大的磁阻(XMR)的材料的特征是具有转换性的开启温度特性:当施加的磁场H超过某个值时,电阻率与温度ρ(T)的关系曲线在与温度相关的温度T〜下表现出最小值*,已被解释为磁场驱动的金属-绝缘体转变,或归因于电子结构的变化。在这里,我们证明了在新发现的XMR材料WTe_2中具有导通行为的ρ(T)曲线可以缩放为MR〜(H /ρ_0)〜m,其中m≈2,ρ_0是零场的电阻率。我们通过实验获得,并且还从观察到的缩放比例得出,导通温度T〜*〜(H-H_c)〜v的磁场依赖性为v≈1/2,这早先用作预测的金属绝缘体的证据过渡。定标还导致在XMR行为开始时电阻率ρ〜*≈2ρ_0的简单定量表达,这非常适合数据。这些结果排除了磁场驱动的金属绝缘体过渡的可能存在或电子结构变化对WTe_2中低温XMR的重大贡献。这项工作解决了几种XMR材料中观察到的导通行为的根源,也为定量了解XMR和非XMR材料中MR的温度依赖性提供了一条通用途径。

著录项

  • 来源
    《Physical review》 |2015年第18期|180402.1-180402.5|共5页
  • 作者单位

    Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA,Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, USA;

    Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA,Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA;

    Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA,Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA;

    Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA;

    Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA;

    Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, USA;

    Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, USA;

    Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA,Departments of Physics, Electrical and Mechanical Engineering, University of Illinois at Chicago, Illinois 60607, USA;

    Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    transition-metal compounds; fermi surface: calculations and measurements; effective mass, G factor; other materials;

    机译:过渡金属化合物;费米表面:计算和测量;有效质量;G因子;其他材料;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号