...
首页> 外文期刊>Physical review >Quantification of energy losses in organic solar cells from temperature-dependent device characteristics
【24h】

Quantification of energy losses in organic solar cells from temperature-dependent device characteristics

机译:根据温度相关的器件特性量化有机太阳能电池中的能量损失

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to the excitonic nature of photoexcitations in organic semiconductors, the working mechanism of organic solar cells relies on the donor-acceptor (D/A) concept enabling photoinduced charge transfer at the interface between two organic materials with suitable energy-level alignment. However, the introduction of such a heterojunction is accompanied by additional energy losses compared to an inorganic homojunction cell due to the presence of a charge-transfer (CT) state at the D/A interface. By careful examination of planar heterojunctions of the molecular semiconductors diindenoperylene (DIP) and C_(60) we demonstrate that three different analysis techniques of the temperature dependence of solar-cell characteristics yield reliable values for the effective photovoltaic energy gap at the D/A interface. The retrieved energies are shown to be consistent with direct spectroscopic measurements and the D/A energy-level offset determined by photoemission spectroscopy. Furthermore, we verify the widespread assumption that the activation energy of the dark saturation current △E and the CT energy E_(CT) may be regarded as identical. The temperature-dependent analysis of open-circuit voltage V_(OC) and dark saturation current is then applied to a variety of molecular planar helerojunctions. The congruency of △E and E_(CT) is again found for all material systems with the exception of copper phthalocyanine/C_(60). The general rule of thumb for organic semiconductor heterojunctions, that V_(OC) at room temperature is roughly half a volt below the CT energy, is traced back to comparable intermolecular electronic coupling in all investigated systems.
机译:由于有机半导体中光激发的激子性质,有机太阳能电池的工作机制依赖于施主-受主(D / A)概念,能够以适当的能级对准在两种有机材料之间的界面进行光致电荷转移。但是,由于在D / A界面上存在电荷转移(CT)状态,与无机同质结电池相比,引入这种异质结会带来额外的能量损失。通过仔细检查分子半导体二茚并oper(DIP)和C_(60)的平面异质结,我们证明了三种不同的太阳能电池特性温度依赖性分析技术可得出D / A界面有效光伏能隙的可靠值。所取回的能量显示与直接光谱测量和由光发射光谱法确定的D / A能级偏移一致。此外,我们验证了广泛的假设,即暗饱和电流△E的激活能量和CT能量E_(CT)可以被视为相同。然后将开路电压V_(OC)和暗饱和电流的温度相关分析应用于各种分子平面螺旋结。对于所有材料系统,除了铜酞菁/ C_(60)之外,都再次发现了△E和E_(CT)的一致性。有机半导体异质结的一般经验法则是,室温下的V_(OC)大约比CT能量低半伏,可追溯到所有研究的系统中可比的分子间电子耦合。

著录项

  • 来源
    《Physical review》 |2013年第23期|235307.1-235307.13|共13页
  • 作者单位

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany,Nanosystems Initiative Munich, Schellingstr, 4, 80799 Muenchen, Germany;

    Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

    Nanosystems Initiative Munich, Schellingstr. 4, 80799 Muenchen, Germany,Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 4, 85748 Garching, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany,Nanosystems Initiative Munich, Schellingstr. 4, 80799 Muenchen, Germany;

    Institut fuer Physik, Universitaet Augsburg, Universitaetsstrusse 1, 86159 Augsburg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions; photoconduction and photovoltaic effects; polymers; organic compounds;

    机译:其他半导体与半导体的接触;p-n结和异质结;光电导和光电效应;聚合物有机化合物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号