...
首页> 外文期刊>Physical review >Mapping the energy surface of PbTiO.i in multidimensional electric-displacement space
【24h】

Mapping the energy surface of PbTiO.i in multidimensional electric-displacement space

机译:在多维电位移空间中绘制PbTiO.i的能表面

获取原文
获取原文并翻译 | 示例
           

摘要

In recent years, methods have been developed that allow first-principles electronic-structure calculations to be carried out under conditions of fixed electric field. For some purposes, however, it is more convenient to work at fixed electric displacement field. Initial implementations of the fixed-displacement-field approach have been limited to constraining the field along one spatial dimension only. Here, we generalize this approach to treat the full three-dimensional displacement field as a constraint and compute the internal-energy landscape as a function of this multidimensional displacement-field vector. Using PbTiO3 as a prototypical system, we identify stable or metastable tetragonal, orthorhombic, and rhombohedral structures as the displacement field evolves along the [001], [110], and [111] directions, respectively. The energy minimum along [001] is found to be deeper than that along [110] or [111], as expected for a system having a tetragonal ground state. The barriers connecting these minima are found to be quite small, consistent with the current understanding that the large piezoelectric effects in PbTiO3 arise from the easy rotation of the polarization vector.
机译:近年来,已经开发了允许在固定电场条件下进行第一性原理电子结构计算的方法。但是,出于某些目的,在固定的电位移场上工作更方便。固定位移场方法的最初实现仅限于沿一个空间维度约束场。在这里,我们将这种方法概括为将完整的三维位移场视为约束,并根据此多维位移场向量计算内部能量分布。使用PbTiO3作为原型系统,随着位移场分别沿[001],[110]和[111]方向发展,我们确定了稳定或亚稳态的四方,正交和菱面体结构。如对于具有四边形基态的系统所预期的那样,发现沿着[001]的能量最小值比沿着[110]或[111]的能量最小值更深。发现连接这些极小值的势垒非常小,这与当前的理解一致,即目前极化电极中旋转容易产生PbTiO3中的大压电效应。

著录项

  • 来源
    《Physical review》 |2011年第11期|p.174-179|共6页
  • 作者

    Jiawang Hong; David Vanderbilt;

  • 作者单位

    Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA;

    Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号