...
首页> 外文期刊>Physical review >Dynamical bistability of single-molecule junctions: A combined experimental and theoretical study of PTCDA on Ag(lll)
【24h】

Dynamical bistability of single-molecule junctions: A combined experimental and theoretical study of PTCDA on Ag(lll)

机译:单分子结的动态双稳态:PTCDA在Ag(III)上的实验和理论研究相结合

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of a molecular junction consisting of a PTCDA molecule between the tip of a scanning tunneling microscope and a Ag(l 11) surface have been investigated experimentally and theoretically. Repeated switching of a PTCDA molecule between two conductance states is studied by low-temperature scanning tunneling microscopy for the first time and is found to be dependent on the tip-substrate distance and the applied bias. Using a minimal model Hamiltonian approach combined with density-functional calculations, the switching is shown to be related to the scattering of electrons tunneling through the junction, which progressively excite the relevant chemical bond. Depending on the direction in which the molecule switches, different molecular orbitals are shown to dominate the transport and thus the vibrational heating process. This in turn can dramatically affect the switching rate, leading to nonmonotonic behavior with respect to bias under certain conditions. In this work, rather than simply assuming the density of states to be constant as in previous works, it was modeled by Lorentzians. This allows for the successful description of this nonmonotonic behavior of the switching rate, thus demonstrating the importance of modeling the density of states realistically.
机译:已经在实验和理论上研究了由扫描隧道显微镜的尖端和Ag(11)表面之间的PTCDA分子组成的分子连接的动力学。首次通过低温扫描隧道显微镜研究了PTCDA分子在两个电导状态之间的重复切换,发现它取决于尖端-基底距离和所施加的偏压。使用最小模型哈密顿量方法与密度泛函计算相结合,表明开关与隧穿穿过结的电子的散射有关,电子逐渐散射了相关的化学键。根据分子转换的方向,显示出不同的分子轨道支配了传输,从而决定了振动加热过程。这反过来会极大地影响开关速率,导致在某些条件下相对于偏置的非单调行为。在这项工作中,它不是像洛伦兹主义者那样简单地假设状态的密度像以前的工作一样是恒定的。这可以成功地描述切换速率的这种非单调行为,从而证明了对状态密度进行实际建模的重要性。

著录项

  • 来源
    《Physical review》 |2011年第11期|p.1259-1267|共9页
  • 作者单位

    Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany;

    Peter Griinberg Institut (PGI-3) andJARA—Fundamentals of Future Information Technology, Forschungszentrum Jiilich,52425 Jtilich, Germany,Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602, Republic of Singapore;

    Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany;

    Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany;

    Peter Griinberg Institut (PGI-3) andJARA—Fundamentals of Future Information Technology, Forschungszentrum Jiilich,52425 Jtilich, Germany;

    Peter Griinberg Institut (PGI-3) andJARA—Fundamentals of Future Information Technology, Forschungszentrum Jiilich,52425 Jtilich, Germany;

    Fachbereich Physik, Universitdt Osnabriick, 49069 Osnabriick, Germany;

    Fachbereich Physik, Universitdt Osnabriick, 49069 Osnabriick, Germany;

    Fachbereich Physik, Universitdt Osnabriick, 49069 Osnabriick, Germany;

    Peter Griinberg Institut (PGI-3) andJARA—Fundamentals of Future Information Technology, Forschungszentrum Jiilich,52425 Jtilich, Germany;

    Institute for Materials Science and Max Bergmann Center of Biomaterials, Dresden University of Technology, 01062 Dresden, Germany,National Center for Nanomaterials Technology, POSTECH, Pohang 790-784, Republic of Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号