...
首页> 外文期刊>Physical review >Application of pulsed laser annealing to ferromagnetic GaMnAs
【24h】

Application of pulsed laser annealing to ferromagnetic GaMnAs

机译:脉冲激光退火在铁磁GaMnAs中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this experimental and theoretical work we focus on the technique of pulsed laser annealing applied to the metastable ferromagnetic semiconductor GaMnAs. Analytical heat-flow calculations are used to illustrate the position and time-dependent temperature distribution during the whole laser annealing process. Such heat-flow calculations will also play an indispensable role for the preparation of other new metastable diluted ferromagnetic semiconductors by ion implantation and subsequent laser annealing. The structural, magnetic, and mag-netotransport properties of ferromagnetic GaMnAs have been probed in dependence on the annealing parameters, e.g., the number of laser pulses and the pulse length. Annealing with a single KrF laser pulse of 30 ns and 0.26 J/cm~2 with the photon energy above the GaAs band gap energy leads to similar magnetic properties like annealing with a single 3 ns Nd:YAG laser pulse with the photon energy below the GaAs band gap energy. We observed that possibly due to Mn diffusion and decreasing hole concentration, several laser pulses degrade the structural and magnetic properties of GaMnAs. Our results reveal the largest saturation magnetization in Mn-implanted GaAs annealed with a single KrF laser pulse.
机译:在这项实验和理论工作中,我们专注于应用于亚稳态铁磁半导体GaMnAs的脉冲激光退火技术。分析性的热流计算用于说明整个激光退火过程中位置和时间相关的温度分布。对于通过离子注入和随后的激光退火制备其他新的亚稳态稀释铁磁半导体,这种热流计算也将发挥不可或缺的作用。已经根据退火参数,例如激光脉冲的数量和脉冲长度,探测了铁磁GaMnAs的结构,磁性和磁-磁性。在30 ns的KrF激光脉冲和0.26 J / cm〜2的单个KrF激光脉冲下进行退火,在GaAs带隙能以上的光子能量会导致类似的磁性能,例如在3 ns的Nd:YAG激光脉冲下进行光子能量低于10ns的退火。 GaAs带隙能量。我们观察到,可能由于Mn扩散和空穴浓度降低,几个激光脉冲会降低GaMnAs的结构和磁性。我们的结果揭示了在用单个KrF激光脉冲退火的Mn注入的GaAs中最大的饱和磁化强度。

著录项

  • 来源
    《Physical review》 |2010年第11期|p.115202.1-115202.12|共12页
  • 作者单位

    Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India;

    rnMaterials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    rnInstitut fuer Anorganische Chemie, Fakultaet fuer Chemie und Mineralogie, Universitaet Leipzig, Linnestrasse 3, 04103 Leipzig, Germany;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

    rnInstitute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, P.O. Box 510119,01314 Dresden, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    thermal diffusivity; general theory, scattering mechanisms; general theory, scattering mechanisms; spin polarized transport in semiconductors;

    机译:热扩散率一般理论;散射机制;一般理论;散射机制;半导体中的自旋极化传输;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号