...
首页> 外文期刊>Physical review >Ultralow blocking temperature and breakdown of the giant spin model in Er~(3+)-doped nanoparticles
【24h】

Ultralow blocking temperature and breakdown of the giant spin model in Er~(3+)-doped nanoparticles

机译:Er〜(3+)掺杂纳米粒子的超低封闭温度和巨大自旋模型的破坏

获取原文
获取原文并翻译 | 示例
           

摘要

The magnetization of luminescent Er~(3+)-doped PbF_2 nanoparticles (formula Er_(0.3)Pb_(0.7)F_(2.3)) has been studied. Despite the high concentration of the doping Er~(3+)ions and relatively large size (8 nm) of these nanoparticles we have found no deviation between field-cooled and zero-field-cooled magnetization curves down to T =0.35 K, which points out an ultralow blocking temperature for the reversal of magnetization. We also have found strongly deviating magnetization curves M(H/T) for different temperatures T. These results altogether show that the investigated nanoparticles are not superparamagnetic, but rather each Er~(3+) ion in these nanoparticles is found in a paramagnetic state down to very low temperatures, which implies the breakdown of the Neel-Brown giant spin model in the case of these nanoparticles. Calculations of magnetization within a paramagnetic model of noninteracting Er~(3+) ions completely support this conclusion. Due to the ultralow blocking temperature, these nanoparticles have a potential for magnetic field-induced nanoscale refrigeration with an option of their optical localization and temperature control.
机译:研究了发光的Er〜(3+)掺杂的PbF_2纳米粒子(分子式Er_(0.3)Pb_(0.7)F_(2.3)的磁化强度。尽管掺杂的Er〜(3+)离子浓度很高且这些纳米粒子的尺寸相对较大(8 nm),但我们发现低至T = 0.35 K的场冷和零场冷磁化曲线之间没有偏差。指出了磁化反转的超低阻断温度。我们还发现了在不同温度T下的强磁化曲线M(H / T)。这些结果完全表明,所研究的纳米粒子不是超顺磁性的,而是这些纳米粒子中的每个Er〜(3+)离子都处于顺磁性状态到非常低的温度,这意味着在这些纳米粒子的情况下,尼尔-布朗巨自旋模型的分解。非相互作用的Er〜(3+)离子顺磁性模型中的磁化强度计算完全支持这一结论。由于超低的阻断温度,这些纳米粒子具有光学感应定位和温度控制的选择,因而具有用于磁场诱导的纳米级制冷的潜力。

著录项

  • 来源
    《Physical review》 |2010年第9期|p.094421.1-094421.8|共8页
  • 作者单位

    Chemistry Department, Katholieke Universiteit Leuven, Leuven B-3001, Belgium;

    rnInstitute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Leuven B-3001, Belgium;

    rnPhysics Department, Antwerpen University, Antwerpen B-2020, Belgium;

    Institute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Leuven B-3001, Belgium;

    rnChemistry Department, Katholieke Universiteit Leuven, Leuven B-3001, Belgium;

    rnInstitute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Leuven B-3001, Belgium;

    rnLaboratoire de Chimie de la Matiere Condensee, Ecole Nationale Superieure de Chimie de Paris,UPMC-Paris 6, CNRS UMR 7574, F-75005, Paris France;

    Laboratoire de Chimie de la Matiere Condensee, Ecole Nationale Superieure de Chimie de Paris,UPMC-Paris 6, CNRS UMR 7574, F-75005, Paris France;

    Physics Department, Antwerpen University, Antwerpen B-2020, Belgium;

    Institute for Nanoscale Physics and Chemistry (INPAC), Katholieke Universiteit Leuven, Leuven B-3001, Belgium;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    crystal-field theory and spin hamiltonians; nonmetals;

    机译:晶体场理论和自旋哈密顿论;非金属;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号