...
首页> 外文期刊>Physical review >Electronic properties of armchair graphene nanoribbons
【24h】

Electronic properties of armchair graphene nanoribbons

机译:扶手椅石墨烯纳米带的电子性能

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the electronic band structure of an undoped graphene armchair nanoribbon. We demonstrate that such nanoribbon always has a gap in its electronic spectrum. Even if the parameters of the noninteracting Hamiltonian are fine tuned to a point where single-electron calculations predict a metallic dispersion, the system becomes unstable toward the spontaneous deformation of the carbon-carbon bonds dangling at the edges of the nanoribbon. This deformation produces a spectral gap. However, to directly observe this instability it is necessary to have a precise control over the parameters of the system, which is rarely possible in practice. As a result, the nanoribbon's Hamiltonian deviates from the instability point. This deviation plays the role of an effective external field biasing the instability in a particular direction. Since the radicals passivating the edge affect the dangling bonds, one may vary this field to some extent by choosing different radicals for passivation. Unfortunately, this approach lacks the accuracy required for a thorough cancellation of the effective field. Disordering the effective field is a more convenient tool of controlling the electronic properties. Such disorder can be introduced through random substitution of the radicals passivating the edges by different radicals. We show that disorder could tune a nanoribbon of finite length back to the gapless regime. This would significantly influence the electronic properties of the system. Specifically, we show that the electrical transport through a nanoribbon is strongly affected by edge disorder.
机译:我们研究了未掺杂的石墨烯扶手椅纳米带的电子带结构。我们证明了这种纳米带在其电子光谱中总是存在缺口。即使将非相互作用哈密顿量的参数微调到单电子计算可以预测金属弥散的程度,该系统对于悬挂在纳米带边缘的碳-碳键的自发变形也变得不稳定。这种变形产生光谱间隙。但是,要直接观察这种不稳定性,必须对系统的参数进行精确控制,这在实践中几乎是不可能的。结果,纳米带的哈密顿量偏离了不稳定性点。这种偏差起着有效外部场的作用,使外部不稳定性偏向特定方向。由于钝化边缘的自由基会影响悬空键,因此可以通过选择不同的自由基进行钝化来在一定程度上改变这一领域。不幸的是,这种方法缺乏彻底消除有效场所需的精度。使有效场混乱是控制电子特性的更方便的工具。可以通过用不同的自由基对钝化边缘的自由基进行随机取代来引入这种混乱。我们表明,无序可以将有限长度的纳米带调整回无间隙状态。这将严重影响系统的电子性能。具体来说,我们表明通过纳米带的电传输受到边缘障碍的强烈影响。

著录项

  • 来源
    《Physical review》 |2009年第12期|777-786|共10页
  • 作者单位

    Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow, Russia Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan;

    Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan Department of Physics, Loughborough University, Loughborough LE11 3TU, United Kingdom;

    Advanced Science Institute, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama, 351-0198, Japan Department of Physics, Center for Theoretical Physics, Applied Physics Program, Center for the Study of Complex Systems, The University of Michigan. Ann Arbor, Michigan 48109-1040, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electronic structure of nanoscale materials: clusters; nanoparticles; nanotubes; and nanocrystals; fullerenes and related materials; intercalation compounds;

    机译:纳米级材料的电子结构:簇;纳米粒子纳米管和纳米晶体;富勒烯及相关物质;插层化合物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号