...
首页> 外文期刊>Physical review >Molecular dynamics simulations of phase transitions in argon-filled single-walled carbon nanotube bundles under high pressure
【24h】

Molecular dynamics simulations of phase transitions in argon-filled single-walled carbon nanotube bundles under high pressure

机译:高压下充氩单壁碳纳米管束中相变的分子动力学模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The behavior of single-walled carbon nanotubes has been investigated under high pressures with the help of classical molecular dynamics simulations in two configurations: when bundles are empty and when argon is present as a pressure transmitting medium. Our calculations show that for the empty tubes, depending on the pressure step, relaxation times, and temperature, several different organizations of collapsed tubes exist for the high-pressure phase above 2.4 GPa. When the nanotubes are filled with argon (as well as surrounded by it), the high-pressure behavior is found to be substantially different. The phase transition shifts to higher pressures as the number of argon atoms inside the nanotubes is increased beyond a critical value and becomes close to 7 GPa for the calculated optimum Ar density. Computed x-ray diffraction patterns of argon-filled nanotubes show that the intensity of the first diffraction peak, which experimentally has been taken as indicative of two-dimensional order in bundles, persists up to higher pressures. We propose that seemingly varied experimental observations in the high-pressure phase transitions of carbon nanotubes are due to the pressure transmitting medium at different densities.
机译:借助于经典的分子动力学模拟,已经在两种配置下研究了高压下单壁碳纳米管的行为:两种情况:束束为空时以及当氩气作为压力传递介质时。我们的计算表明,对于空管,取决于压力阶跃,弛豫时间和温度,对于高于2.4 GPa的高压相,存在多个折叠管组织。当纳米管充满氩气(以及被氩气包围)时,高压行为被发现是实质上不同的。当纳米管中的氩原子数增加到超过临界值时,相变转移到更高的压力,并且对于计算出的最佳Ar密度,其变为接近7 GPa。氩气填充的纳米管的X射线衍射图表明,第一个衍射峰的强度一直保持较高的压力,该强度在实验上已被视为束中的二维顺序的指示。我们认为,在碳纳米管的高压相变中看似变化的实验观察是由于不同密度的压力传递介质引起的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号