...
首页> 外文期刊>Physical review >Spin-torque-induced switching and precession in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions
【24h】

Spin-torque-induced switching and precession in fully epitaxial Fe/MgO/Fe magnetic tunnel junctions

机译:自旋转矩诱导的全外延Fe / MgO / Fe磁性隧道结中的开关和进动

获取原文
获取原文并翻译 | 示例
           

摘要

We experimentally investigated current-driven oscillation in fully epitaxial Fe(001)/MgO(001)/Fe(001) magnetic tunnel junctions (MTJs) to pave the way for a better understanding of why the linewidth (a few hundred MHz) of microwave oscillation in spin-torque nano-oscillators (STNOs) based on textured MTJs is much larger than that (smaller than 10 MHz) in STNOs based on current-perpendicular-to-plane giant-magnetoresistance junctions. The epitaxial Fe/MgO/Fe STNO is a model system for studying the physics of spin-transfer torque because it has a well-defined single-crystal barrier and electrode layers with atomically flat in terfaces. In the Fe/MgO/Fe STNOs, clear spin-torque-induced switching and spin-torque-induced precession were observed in epitaxial MTJs. When the initial magnetic alignment was antiparallel and the bias current exceeded the threshold current, a state in which the spin-torque compensates for the damping, the STNOs showed a rapid increase in the peak intensity, a redshift of the peak frequency, and a minimum linewidth, all clear evidence of spin-torque-induced precession above the threshold current. The minimum linewidth of the STNOs was 200 MHz, which is comparable to that of textured CoFeB/MgO/CoFeB MTJs. This indicates that the origin of the large linewidth cannot be attributed to structural inhomogeneity in textured MTJs. When the initial magnetic alignment was parallel, the microwave spectrum showed a single peak, which has rarely been observed in textured MTJs without application of a perpendicular magnetic field. The mechanism of the single-peak oscillation can be explained by taking account of the induced perpendicular magnetic anisotropy in the 3-nm-thick Fe(001) free layer grown on the MgO(001) barrier layer.
机译:我们通过实验研究了全外延Fe(001)/ MgO(001)/ Fe(001)磁性隧道结(MTJs)中的电流驱动振荡,从而为更好地理解为什么微波的线宽(几百MHz)铺平了道路基于带纹理的MTJ的自旋扭矩纳米振荡器(STNO)的振荡远大于基于电流垂直于平面的巨型磁阻结的STNO的自振荡扭矩(小于10 MHz)。 Fe / MgO / Fe STNO外延是一个用于研究自旋转移力矩的物理模型系统,因为它具有定义明确的单晶势垒和电极层,原子层的界面平坦。在Fe / MgO / Fe STNOs中,在外延MTJs中观察到清晰的自旋扭矩诱导的切换和自旋扭矩诱导的进动。当初始磁对准反平行且偏置电流超过阈值电流(自旋扭矩补偿阻尼的状态)时,STNOs的峰值强度快速增加,峰值频率出现红移,并且最小值线宽,所有清楚的证据都表明自旋转矩引起的进动高于阈值电流。 STNO的最小线宽为200 MHz,与带纹理的CoFeB / MgO / CoFeB MTJ的线宽相当。这表明大线宽的起源不能归因于纹理MTJ中的结构不均匀性。当初始磁取向平行时,微波光谱显示出一个单峰,如果不施加垂直磁场,在带纹理的MTJ中很少观察到该峰。可以通过考虑在MgO(001)阻挡层上生长的3nm厚的Fe(001)自由层中感应的垂直磁各向异性来解释单峰振荡的机制。

著录项

  • 来源
    《Physical review》 |2009年第17期|174405.1-174405.8|共8页
  • 作者单位

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan Japan Society for the Promotion of Science, Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan Unite Mixte de Physique CNRS/Thales and Universite Paris Sud 11, Route Departementale 128, 91767 Palaiseau, France;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute, Tsukuba, Ibaraki 305-8568, Japan;

    Unite Mixte de Physique CNRS/Thales and Universite Paris Sud 11, Route Departementale 128, 91767 Palaiseau, France;

    Unite Mixte de Physique CNRS/Thales and Universite Paris Sud 11, Route Departementale 128, 91767 Palaiseau, France;

    Unite Mixte de Physique CNRS/Thales and Universite Paris Sud 11, Route Departementale 128, 91767 Palaiseau, France;

    Unite Mixte de Physique CNRS/Thales and Universite Paris Sud 11, Route Departementale 128, 91767 Palaiseau, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.); tunneling; metal-insulator-metal structures; magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields;

    机译:动态特性(动态磁化率;自旋波;自旋扩散;动态缩放等);隧道金属-绝缘体-金属结构;磁电子学自旋电子学:利用自旋极化传输或集成磁场的设备;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号