...
首页> 外文期刊>Physical review. B, Condensed Matter And Materials Physics >Coupling atomistic and continuum length scales in heteroepitaxial systems: Multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si_3N_4 nanopixels
【24h】

Coupling atomistic and continuum length scales in heteroepitaxial systems: Multiscale molecular-dynamics/finite-element simulations of strain relaxation in Si/Si_3N_4 nanopixels

机译:异质外延系统中原子长度尺度和连续长度尺度的耦合:Si / Si_3N_4纳米像素中应变松弛的多尺度分子动力学/有限元模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A hybrid atomistic-continuum simulation approach has been implemented to study strain relaxation in lattice-mismatched Si/Si_3N_4 nanopixels on a Si(111) substrate. We couple the molecular-dynamics (MD) and finite-element simulation approaches to provide an atomistic description near the interface and a continuum description deep into the substrate, increasing the accessible length scales and greatly reducing the computational cost. The results of the hybrid simulation are validated against full multimillion-atom MD simulations. We find that strain relaxation in Si/Si_3N_4 nanopixels may occur through the formation of a network of interfacial domain boundaries reminiscent of interfacial misfit dislocations. They result from the nucleation of domains of different interfacial bonding at the free edges and corners of the nanopixel, and subsequent to their creation they propagate inwards. We follow the motion of the domain boundaries and estimate a propagation speed of about ~2.5 X 10~3 m/s. The effects of temperature, nanopixel architecture, and film structure on strain relaxation are also investigated. We find: (ⅰ) elevated temperature increases the interfacial domain nucleation rates; (ⅱ) a thin compliant Si layer between the film and the substrate plays a beneficial role in partially suppressing strain relaxation; and (ⅲ) additional control over the interface morphology may be achieved by varying the film structure.
机译:已经实现了一种混合原子连续谱模拟方法,以研究Si(111)衬底上晶格不匹配的Si / Si_3N_4纳米像素中的应变松弛。我们将分子动力学(MD)和有限元模拟方法结合使用,以在界面附近提供原子描述,并在基板内部提供连续描述,从而增加了可访问的长度范围,并大大降低了计算成本。混合仿真的结果已针对完整的数百万个原子的MD仿真进行了验证。我们发现,Si / Si_3N_4纳米像素中的应变弛豫可能通过界面畴边界网络的形成而发生,让人联想到界面失配位错。它们是由于在纳米像素的自由边缘和角落处不同界面键合域的成核而产生的,并且在其创建之后,它们向内传播。我们跟随域边界的运动,估计传播速度约为〜2.5 X 10〜3 m / s。还研究了温度,纳米像素结构和薄膜结构对应变松弛的影响。我们发现:(ⅰ)高温会增加界面域的成核速率; (ⅱ)在薄膜和衬底之间的薄的顺应性硅层在部分抑制应变松弛中起有益作用; (ⅲ)通过改变膜结构可以实现对界面形态的附加控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号