...
首页> 外文期刊>Physical review >Interplay between destructive quantum interference and symmetry-breaking phenomena in graphene quantum junctions
【24h】

Interplay between destructive quantum interference and symmetry-breaking phenomena in graphene quantum junctions

机译:石墨烯量子结中破坏性量子干扰与对称破坏现象之间的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

We study the role of electronic spin and valley symmetry in the quantum interference (QI) patterns of the transmission function in graphene quantum junctions. In particular, we link it to the position of the destructive QI antiresonances. When the spin or valley symmetry is preserved, electrons with opposite spin or valley display the same interference pattern. On the other hand, when a symmetry is lifted, the antiresonances are split, with a consequent dramatic differentiation of the transport properties in the respective channel. We demonstrate rigorously this link in terms of the analytical structure of the electronic Green function, which follows from the symmetries of the microscopic model, and we confirm the result with numerical calculations for graphene nanoflakes. We argue that this is a generic and robust feature that can be exploited in different ways for the realization of nanoelectronic QI devices, generalizing the recent proposal of a QI-assisted spin-filtering effect [A. Valli et al., Nano Lett. 18, 2158 (2018)].
机译:我们研究了电子自旋和谷对称性在石墨烯量子结中传递函数的量子干涉(QI)模式中的作用。特别地,我们将其链接到破坏性QI反共振的位置。当保留自旋或谷对称性时,自旋或谷相反的电子将显示相同的干涉图样。另一方面,当对称性解除时,反共振被分裂,从而相应通道中的传输特性发生显着差异。我们从微观模型的对称性出发,以电子格林函数的解析结构严格地证明了这一联系,并用石墨烯纳米薄片的数值计算证实了这一结果。我们认为,这是一个通用且强大的功能,可以以不同的方式利用它来实现纳米电子QI装置,从而概括了最近提出的QI辅助自旋滤波效应[A. Valli等,Nano Lett。 18,2158(2018)]。

著录项

  • 来源
    《Physical review》 |2019年第7期|075118.1-075118.10|共10页
  • 作者单位

    CNR SISSA Via Bonomea 265 I-34136 Trieste Italy|CNR CNR IOM Democritos Ist Officina Materiali Via Bonomea 265 I-34136 Trieste Italy;

    CNR SISSA Via Bonomea 265 I-34136 Trieste Italy|CNR CNR IOM Democritos Ist Officina Materiali Via Bonomea 265 I-34136 Trieste Italy|Sapienza Univ Rome ISC CNR P A Moro 5 I-00185 Rome Italy|Sapienza Univ Rome Dept Phys P A Moro 5 I-00185 Rome Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号