...
首页> 外文期刊>Physical review >Strong- to weak-coupling superconductivity in high-T_c bismuthates: Revisiting the phase diagram via μSR
【24h】

Strong- to weak-coupling superconductivity in high-T_c bismuthates: Revisiting the phase diagram via μSR

机译:高T_c铋酸盐中的强耦合至弱耦合超导:通过μSR重新访问相图

获取原文
获取原文并翻译 | 示例
           

摘要

Several decades after the discovery of superconductivity in bismuthates, the strength of their electron-phonon coupling and its evolution with doping remain puzzling. To clarify these issues, polycrystalline hole-doped Ba_(1-x)K_xBiO_3 (0.1 ≤ x ≤ 0.6) samples were systematically synthesized and their bulk and microscopic superconducting properties were investigated by means of magnetic susceptibility and muon-spin rotation and relaxation (μSR), respectively. The phase diagram of Ba_(1-X)K_XBiO_3 was reliably extended up to x = 0.6, which is still found to be a bulk superconductor. The lattice parameter a increases linearly with K content, implying a homogeneous chemical doping. The low-temperature superfluid density, measured via transverse-held μSR, indicates an isotropic fully gapped superconducting state with zero-temperature gaps △_0/k_BT_C = 2.15, 2.10, and 1.75, and magnetic penetration depths λ_0 = 219, 184, and 279 nm for x = 0.3, 0.4, and 0.6, respectively. A change in the superconducting gap, from a nearly ideal BCS value (1.76k_BT_C in the weak-coupling case) in the overdoped x = 0.6 region, to much higher values in the optimally doped case, implies a gradual decrease in electron-phonon coupling with doping.
机译:在铋酸盐中发现超导性几十年后,其电子-声子耦合的强度及其随掺杂的演化仍然令人费解。为了澄清这些问题,系统地合成了多晶掺杂空穴的Ba_(1-x)K_xBiO_3(0.1≤x≤0.6)样品,并通过磁化率和μ自旋旋转和弛豫(μSR)研究了它们的体积和微观超导性能。 ), 分别。 Ba_(1-X)K_XBiO_3的相图可靠地扩展到x = 0.6,仍然发现它是体超导体。晶格参数a随着K含量线性增加,这意味着均匀的化学掺杂。通过横向保持的μSR测得的低温超流体密度表示各向同性的全隙超导状态,其零温度间隙△_0 / k_BT_C = 2.15、2.10和1.75,磁渗透深度λ_0= 219、184和279 x的nm分别为0.3、0.4和0.6。从超掺杂x = 0.6区域中的近理想BCS值(在弱耦合情况下为1.76k_BT_C)到最佳掺杂情况下的高得多的值,超导间隙的变化意味着电子-声子耦合逐渐减小掺杂。

著录项

  • 来源
    《Physical review》 |2020年第1期|014508.1-014508.7|共7页
  • 作者单位

    Laboratory for Multiscale Materials Experiments Paul Scherrer Institut Villigen CH-5232 Switzerland Physik-Institut Universitaet Zuerich Winterthurerstrasse 190 Zuerich CH-8057 Switzerland;

    Laboratory for Multiscale Materials Experiments Paul Scherrer Institut Villigen CH-5232 Switzerland;

    Swiss Light Source Paul Scherrer Institut Villigen CH-5232 Switzerland Department of Physics Ben-Gurion University of the Negev Beer-Sheva 84105 Israel;

    Laboratory for Muon-Spin Spectroscopy Paul Scherrer Institut Villigen CH-5232 Switzerland;

    Swiss Light Source Paul Scherrer Institut Villigen CH-5232 Switzerland;

    Laboratory for Muon-Spin Spectroscopy Paul Scherrer Institut Villigen CH-5232 Switzerland Laboratorium fuer Festkoerperphysik ETH Zuerich Zurich CH-8093 Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号