...
首页> 外文期刊>Physical review >Conductance and adhesion in an atomically precise Au-Au point contact
【24h】

Conductance and adhesion in an atomically precise Au-Au point contact

机译:原子精确的Au-Au点接触中的电导和粘附

获取原文
获取原文并翻译 | 示例
           

摘要

Comprehension of electrical and mechanical properties of atomic-sized metal contacts are of central importance for a number of different fields, e.g., the development of interconnects in nanoelectronics, the description of friction on the nanoscale, and break-junction experiments. Au-Au nanocontacts are experimentally particularly suited because of the chemical inertness and serve as a valuable testbed for charge transport in the quantum regime. Here we use the tip of a low-temperature scanning tunneling microscope to form atomic contacts with a reconstructed Au(111) surface. As both electrodes are perfectly stable throughout 19 000 individual measurements, the atomic configuration of the point contact can be precisely controlled by variation of the tip position with respect to the substrate atoms and the reconstruction domains with different stacking. This allows us to reveal the influence of the two last atomic layers of each electrode on the conductance and the stiffness of the junction. Four different conductance regimes can be distinguished and explained by two atomic conductance channels. The stiffness of the junction can be inferred from the adhesion hysteresis that is reduced at threefold hollow sites and closed-packed domains of the reconstructed surface. Our experimental results will allow profound tests of atomic-scale theoretical simulations in the field.
机译:理解原子大小的金属触点的电气和机械性能对于许多不同领域至关重要,例如,纳米电子学中互连的发展,纳米级摩擦的描述以及断裂结实验。由于其化学惰性,Au-Au纳米触点在实验上特别适合,并且可以作为量子态中电荷传输的宝贵试验平台。在这里,我们使用低温扫描隧道显微镜的尖端与重建的Au(111)表面形成原子接触。由于两个电极在19000次单独测量中都非常稳定,因此点接触的原子构型可以通过相对于衬底原子的尖端位置变化以及具有不同堆叠的重构域来精确控制。这使我们能够揭示每个电极的最后两个原子层对结的电导率和刚度的影响。可以通过两个原子电导通道来区分和解释四种不同的电导机制。接合处的刚度可以从粘合滞后推断出来,粘合滞后在重构表面的三倍空心位置和密排区域降低。我们的实验结果将为该领域的原子尺度理论模拟提供深刻的测试。

著录项

  • 来源
    《Physical review》 |2020年第3期|035429.1-035429.7|共7页
  • 作者

    Lukas Gerhard; Wulf Wulfhekel;

  • 作者单位

    Institute of Quantum Materials and Technology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen Germany;

    Institute of Quantum Materials and Technology Karlsruhe Institute of Technology (KIT) D-76344 Eggenstein-Leopoldshafen Germany Physikalisches Institut Karlsruhe Institute of Technology (KIT) D-76131 Karlsruhe Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号