...
首页> 外文期刊>Physical review >Real-space investigation of the charge density wave in VTe_2 monolayer with broken rotational and mirror symmetries
【24h】

Real-space investigation of the charge density wave in VTe_2 monolayer with broken rotational and mirror symmetries

机译:旋转对称和镜像对称的VTe_2单层中电荷密度波的实空间研究

获取原文
获取原文并翻译 | 示例
           

摘要

Recently the charge density wave (CDW) in vanadium dichalcogenides have attracted increasing research interest, but a real-space investigation on the symmetry breaking of the CDW state in VTe_2 monolayer is still lacking. We have investigated the CDW of VTe_2 monolayer by low energy electron diffraction (LEED) and scanning tunneling microscope (STM). While the LEED experiments revealed a (4 × 4) CDW transition near 192 K, our low-temperature STM experiments resolved the (4 × 4) lattice distortions and charge-density modulation in real space, and further unveiled a one-dimensional structural modulation that breaks the threefold rotational and mirror symmetries in the CDW state. In accordance with the CDW state at low temperature, a CDW gap of 12 meV was detected by scanning tunneling spectroscopy at 4.9 K. The observed symmetry breaking implies that besides the conventional Fermi surface nesting or the (q-dependent electron-phonon coupling, some other mechanism may also contribute to breaking the threefold rotational symmetry in the CDW state of VTe_2 monolayer.
机译:近年来,二卤化钒钒中的电荷密度波(CDW)引起了越来越多的研究兴趣,但仍缺乏关于VTe_2单层中CDW态对称破坏的现实空间研究。我们已经通过低能电子衍射(LEED)和扫描隧道显微镜(STM)研究了VTe_2单层的CDW。 LEED实验揭示了192 K附近的(4×4)CDW跃迁,我们的低温STM实验解决了实际空间中的(4×4)晶格畸变和电荷密度调制,并进一步揭示了一维结构调制在CDW状态下破坏了三重旋转和镜像对称性。根据低温下的CDW状态,通过扫描隧道光谱在4.9 K下检测到了12 meV的CDW间隙。观察到的对称性破坏意味着,除了常规的费米表面嵌套或(q依赖电子-声子耦合,其他机制也可能有助于打破VTe_2单层CDW状态下的三重旋转对称性。

著录项

  • 来源
    《Physical review》 |2020年第3期|035407.1-035407.5|共5页
  • 作者单位

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China;

    School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China;

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China;

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China;

    Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China School of Physical Sciences University of Chinese Academy of Sciences Beijing 100049 China Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China Beijing Acadamy of Quantum Information Sciences Beijing 100193 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号