...
首页> 外文期刊>Physical review >Low-field vortex melting in a single crystal of Ba_(0.6)K_(0.4)Fe_2As_2
【24h】

Low-field vortex melting in a single crystal of Ba_(0.6)K_(0.4)Fe_2As_2

机译:Ba_(0.6)K_(0.4)Fe_2As_2单晶中的低场涡旋熔化

获取原文
获取原文并翻译 | 示例
           

摘要

Theoretically, the vortex melting phenomenon occurs at both low and high magnetic fields at a fixed temperature. While the high-field melting has been extensively investigated in high-T_Ccuprates, the low-field melting phenomena in the presence of disorder has not been well explored. Using bulk magnetization measurements and a high-sensitivity differential magneto-optical imaging technique, we detect a low-field vortex melting phenomenon in a single crystal of Ba_(0.6)K_(0.4)Fe_2As_2. The low-field melting is accompanied with a significant change in local magnetization, ~3 G, which decreases with increasing applied field. The observed vortex melting phenomenon is traced on a field-temperature phase diagram, which lies very close to theoretically predicted Lindemann criteria based low-field melting line. Our analysis shows a Lindemann number c_L = 0.14 associated with the low-field melting. Imaging of low-field vortex melting features shows that the process nucleates via formation of extended fingerlike projections which spreads across the sample with increasing field or temperature, before entering into an interaction-dominated vortex solid phase regime. Magnetization scaling analysis and angular dependence of bulk magnetization hysteresis loop shows extended pins naturally present in the sample. These defects create a low-field glassy vortex phase sustaining a finite critical current present in the phase diagram below the low-field liquid phase. We construct a vortex matter phase diagram, which identifies boundaries demarcating a low-field glassy vortex state from a dilute vortex liquid phase and a weakly interacting solid phase above it. All these phases are shown to be present well below the interaction dominated vortex state shown in the phase diagram.
机译:从理论上讲,在固定温度下的低磁场和高磁场中都会发生涡旋熔化现象。尽管已经在高T_Ccuprates中对高场融化进行了广泛研究,但尚未很好地研究存在混乱的低场融化现象。使用体磁化测量和高灵敏度差分磁光成像技术,我们检测到Ba_(0.6)K_(0.4)Fe_2As_2单晶中的低场涡旋熔化现象。低场熔化伴随着局部磁化强度的显着变化,约为3 G,随施加磁场的增加而减小。观测到的涡旋融化现象是在场温相图中绘制的,该图非常接近理论上基于林德曼准则的低场融线。我们的分析显示与低场融化有关的林德曼数c_L = 0.14。低场涡旋熔融特征的成像显示,该过程通过形成延伸的手指状突起而成核,该突起随着电场或温度的增加而散布在整个样品中,然后进入相互作用为主的涡旋固相体系。磁化标度分析和体磁化磁滞回线的角度依赖性显示了样品中自然存在的延伸引脚。这些缺陷会产生低场玻璃状涡旋相,并维持在低场液相以下的相图中存在的有限临界电流。我们构造了一个涡旋物质相图,该图识别了从稀涡旋液相和在其上方的弱相互作用固相划定低场玻璃状涡旋状态的边界。所有这些相都显示在相图中所示的相互作用主导的涡旋状态之下。

著录项

  • 来源
    《Physical review》 |2020年第1期|014502.1-014502.11|共11页
  • 作者单位

    Department of Physics Indian Institute of Technology Kanpur 208016 India;

    Department of Applied Physics The University of Tokyo Hongo Bunkyo-ku Tokyo 113-8656 Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号