...
首页> 外文期刊>Physical review >Tunable Casimir equilibria with phase change materials: From quantum trapping to its release
【24h】

Tunable Casimir equilibria with phase change materials: From quantum trapping to its release

机译:具有相变材料的可调卡西米尔平衡:从量子阱到释放

获取原文
获取原文并翻译 | 示例
           

摘要

A stable suspension of nanoscale particles due to the Casimir force is of great interest for many applications such as sensing, noncontract nanomachines. However, the suspension properties are difficult to change once the devices are fabricated. Vanadium dioxide (VO_2) is a phase change material, which undergoes a transition from a low-temperature insulating phase to a high-temperature metallic phase around a temperature of 340 K. In this work, we study Casimir forces between a nanoplate (gold or Teflon) and a layered structure containing a VO_2 film. It is found that stable Casimir suspensions of nanoplates can be realized in a liquid environment, and the equilibrium distances are determined, not only by the layer thicknesses but also by the matter phases of VO_2. Under proper designs, a switch from quantum trapping of the gold nanoplate ("on" state) to its release ("off" state) as a result of the metal-to-insulator transition of VO_2, is revealed. On the other hand, the quantum trapping and release of a Teflon nanoplate is found under the insulator-to-metal transition of VO_2 . Our findings offer the possibility of designing switchable devices for applications in micro and nanoeleetromechanical systems.
机译:由于卡西米尔(Casimir)力而导致的纳米级颗粒的稳定悬浮对于许多应用(例如传感,非合同纳米机械)非常感兴趣。但是,一旦制造出器件,悬置性能就很难改变。二氧化钒(VO_2)是一种相变材料,在340 K附近经历从低温绝缘相到高温金属相的转变。在这项工作中,我们研究了纳米板(金或铁氟龙)和包含VO_2膜的分层结构。发现可以在液体环境中实现稳定的纳米板卡西米尔悬浮液,并且平衡距离不仅取决于层厚,还取决于VO_2的物相。在适当的设计下,由于VO_2从金属到绝缘体的转变,揭示了从金纳米板的量子俘获(“开”状态)到其释放(“关”状态)的转换。另一方面,在VO_2的绝缘体到金属的跃迁下发现了铁氟龙纳米板的量子俘获和释放。我们的发现提供了设计用于微机电系统的可切换设备的可能性。

著录项

  • 来源
    《Physical review》 |2020年第10期|104107.1-104107.8|共8页
  • 作者

    Lixin Ge; Xi Shi; Zijun Xu; Ke Gong;

  • 作者单位

    School of Physics and Electronic Engineering Xinyang Normal University Xinyang 464000 China;

    Department of Physics Shanghai Normal University Shanghai 200234 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号