...
首页> 外文期刊>Physical review >Magnetoelectric control of topological phases in graphene
【24h】

Magnetoelectric control of topological phases in graphene

机译:石墨烯拓扑阶段的磁电控制

获取原文
获取原文并翻译 | 示例
           

摘要

Topological antiferromagnetic (AFM) spintronics is an emerging field of research, which involves the topological electronic states coupled to the AFM order parameter known as the Ned vector. The control of these states is envisioned through manipulation of the Ned vector by spin-orbit torques driven by electric currents. Here we propose a different approach favorable for low-power AFM spintronics, where the control of the topological states in a two-dimensional material, such as graphene, is performed via the proximity effect by the voltage induced switching of the Ned vector in an adjacent magnetoelectric AFM insulator, such as chromia. Mediated by the symmetry protected boundary magnetization and the induced Rashba-type spin-orbit coupling at the interface between graphene and chromia, the emergent topological phases in graphene can be controlled by the Ned vector. Using density functional theory and tight-binding Hamiltonian approaches, we model a graphene/Cr2O3 (0001) interface and demonstrate nontrivial band gap openings in the graphene Dirac bands asymmetric between the K and K' valleys. This gives rise to an unconventional quantum anomalous Hall effect (QAHE) with a quantized value of 2e(2)/h and an additional steplike feature at a value close to e(2)/2h, and the emergence of the spin-polarized valley Hall effect (VHE). Furthermore, depending on the Ned vector orientation, we predict the appearance and transformation of different topological phases in graphene across the 180 degrees AFM domain wall, involving the QAHE, the valley-polarized QAHE, and the quantum VHE, and the emergence of the chiral edge states along the domain wall. These topological properties are controlled by voltage through magnetoelectric switching of the AFM insulator with no need for spin-orbit torques.
机译:拓扑反铁磁(AFM)闪奖金是一种新兴的研究领域,其涉及耦合到AFM顺序参数称为NED矢量的拓扑电子状态。通过由电流驱动的旋转轨道扭矩来操纵NED矢量来设想对这些状态的控制。在这里,我们提出了一种不同的方法,该方法有利于低功率AFM闪贷功能,其中通过邻近的邻近的NED载体的电压诱导的向量的电压诱导的向量的接近效应来执行诸如石墨烯的二维材料中的拓扑状态的控制磁电AFM绝缘体,如染色体。由对称保护的边界磁化和诱导的Rashba型旋转轨道耦合介导的石墨烯和染色之间的界面处,石墨烯中的紧急拓扑相可以由NED载体控制。使用密度泛函理论和紧密捆绑的哈密顿方法,我们模拟了石墨烯/ CR2O3(0001)界面,并在K和K'谷之间不对称的石墨烯Diac带中演示了非竞争带隙开口。这使得具有2E(2)/ h的量化值的非传统量子异常霍普效应(QAHE)以及靠近e(2)/ 2h的值的额外的温泉特征,以及旋转极化山谷的出现霍尔效应(VHE)。此外,根据NED向量方向,我们预测了石墨烯中不同拓扑阶段的外观和转化,涉及QAHE,谷极化QAHE和量子VHE,以及手性的出现沿域墙的边缘状态。这些拓扑特性通过AFM绝缘体的磁电切换的电压控制,不需要旋转轨道扭矩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号