...
首页> 外文期刊>Physical review >Possible role of grain-boundary and dislocation structure for the magnetic-flux trapping behavior of niobium: A first-principles study
【24h】

Possible role of grain-boundary and dislocation structure for the magnetic-flux trapping behavior of niobium: A first-principles study

机译:谷物 - 边界和脱位结构对铌磁通捕获行为的可能作用:第一原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

First-principles methods were used to understand magnetic flux trapping at vacancies, dislocations, and grain boundaries in high-purity superconducting niobium. Full-potential linear augmented plane-wave methods were applied in progressively greater complexity, starting at simple vacancies and extending to screw dislocations and tilt grain boundaries to analyze the effects of magnetic field on the superconducting state surrounding these defects. Density-functional theory calculations identified changes in electronic structure at the dislocation core and different types of symmetric tilt grain boundaries relative to bulk niobium. Electron redistribution enhanced nonparamagnetic effects and thus perturb superconductivity, resulting in local conditions suitable for premature flux penetration and subsequently flux pinning. Since the coherence length of superconducting niobium at 0 K is significantly larger than the lattice parameter, the effects of line and planar defects in niobium are predicted to be stronger for defect clusters than single defects in isolation, which is consistent with recent experimental observations. Controlling accumulation or depletion of charge at the defects, e.g.. by segregation of an impurity atom, can mitigate these tendencies thus increasing the quality of superconducting niobium.
机译:第一原理方法用于了解在高纯度超导铌中的空位,脱位和晶界处的磁通量捕获。全电位线性增强平面波方法逐渐更大的复杂性,从简单的空位开始,并延伸以螺旋脱位和倾斜晶界,以分析磁场对这些缺陷周围的超导状态的影响。密度函数理论计算确定了相对于散装铌的错位核心和不同类型对称倾斜晶界的电子结构的变化。电子再分配增强了非分度效应,从而产生了扰动超导性,导致适合于过早通量渗透的局部条件和随后的焊剂钉扎。由于0 k的超导铌的相干长度显着大于格子参数,因此预测线和平坦缺陷在铌中的效果比单独的单一缺陷比单一缺陷更强,这与最近的实验观察一致。控制缺陷的电荷的积累或耗尽,例如通过杂质原子的偏析,可以减轻这些趋势,从而增加超导铌的质量。

著录项

  • 来源
    《Physical review》 |2020年第18期|184102.1-184102.11|共11页
  • 作者单位

    School for Engineering of Matter Transport and Energy Arizona State University Tempe Arizona 85287 USA;

    School for Engineering of Matter Transport and Energy Arizona State University Tempe Arizona 85287 USA;

    The Applied Superconductivity Center National High Magnetic Field Laboratory Tallahassee Florida 32310 USA;

    Department of Material Sciences and Engineering Michigan State University East Lansing Michigan 48824 USA;

    School for Engineering of Matter Transport and Energy Arizona State University Tempe Arizona 85287 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号