...
首页> 外文期刊>Physical review >Intralayer ferromagnetism between S = 5/2 ions in MnBi_2Te_4: Role of empty Bi p states
【24h】

Intralayer ferromagnetism between S = 5/2 ions in MnBi_2Te_4: Role of empty Bi p states

机译:Mnbi_2te_4中S = 5/2离子之间的intralayer铁磁性:空白P状态的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The layered magnetic topological insulator MnBi_2Te_4 is a promising platform to realize the quantum anomalous Hall effect because its layers possess intrinsic ferromagnetism. However, it is not well understood why the high-spin d~5 magnetic ions Mn~(2+) forming the Mn-Te-Mn spin exchange paths prefer ferromagnetic (FM) coupling, contrary to the prediction of the Goodenough-Kanamori rule that a TM-L-TM spin exchange where TM and L are a transition-metal magnetic cation and a main group ligand, respectively, is antiferromagnetic (AFM) even when the bond angle of the exchange path is 90°. Using density functional theory calculations, we show that the presence of Bi~(3+) ions is essential for the FM coupling in MnBi_2Te_4. Then, using a tight-binding model Hamiltonian. we find that high-spin d~5 ions (S = 5/2) in TM-L-TM spin exchange paths prefer FM coupling if the empty p orbitals of a nonmagnetic cation M (e.g., Bi~(3+) ion) hybridize strongly with those of the bridging ligand L but AFM coupling otherwise.
机译:层状磁性拓扑绝缘体Mnbi_2te_4是实现量子异常霍普效应的有希望的平台,因为其层具有内在的铁磁性。然而,不太了解为什么形成Mn-Te-Mn旋转交换路径的高旋转D〜5磁离子Mn〜(2+)更喜欢铁磁(FM)耦合,相反符合代理-Kanamori规则的预测TM-L-TM旋转交换,其中TM和L分别是过渡金属磁性阳离子和主要组配体,即使当交换路径的键合角度为90°时,也是反铁磁(AFM)。使用密度函数理论计算,我们表明Bi〜(3+)离子的存在对于MNBI_2TE_4中的FM耦合是必不可少的。然后,使用紧密绑定的模型Hamiltonian。如果非磁性阳离子M的空P轨道(例如,Bi〜(3+)离子),我们发现TM-L-TM自旋交换路径中的高旋转D〜5离子(S = 5/2)在TM-L-TM旋转交换路径中偏好FM耦合与桥接配体L的那些强烈杂交,但否则AFM耦合。

著录项

  • 来源
    《Physical review》 |2020年第20期|201408.1-201408.6|共6页
  • 作者单位

    Department of Physics Key Laboratory of Computational Physical Sciences (Ministry of Education) State Key Laboratory of Surface Physics Fudan University Shanghai 200433 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing 210093 People's Republic of China;

    Department of Physics Key Laboratory of Computational Physical Sciences (Ministry of Education) State Key Laboratory of Surface Physics Fudan University Shanghai 200433 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing 210093 People's Republic of China;

    Department of Physics Key Laboratory of Computational Physical Sciences (Ministry of Education) State Key Laboratory of Surface Physics Fudan University Shanghai 200433 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing 210093 People's Republic of China;

    Department of Chemistry Research Institute for Basic Sciences Kyung Hee University Seoul 02447 Korea;

    Department of Chemistry North Carolina State University Raleigh North Carolina 27695-8204 USA Group SDeng State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter (FJIRSM) Chinese Academy of Sciences (CAS) Fuzhou 350002 China;

    Department of Physics Key Laboratory of Computational Physical Sciences (Ministry of Education) State Key Laboratory of Surface Physics Fudan University Shanghai 200433 People's Republic of China School of Physics and Materials Engineering Hefei Normal University Hefei 230601 People's Republic of China;

    Department of Physics Key Laboratory of Computational Physical Sciences (Ministry of Education) State Key Laboratory of Surface Physics Fudan University Shanghai 200433 People's Republic of China Collaborative Innovation Center of Advanced Microstructures Nanjing 210093 People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号