...
首页> 外文期刊>Physical review >Nonreciprocal piezoelectric metamaterial framework and circuit strategies
【24h】

Nonreciprocal piezoelectric metamaterial framework and circuit strategies

机译:非蓄能电压超材料框架和电路策略

获取原文
获取原文并翻译 | 示例
           

摘要

Recent research has shown that a proper spatiotemporal modulation of material properties (i.e.. mass density or stiffness) can break reciprocity for elastic waves: however, such concepts are challenging to implement experimentally in mechanical waveguides. Piezoelectric metamaterials offer the possibility of parameter modification via electrical circuitry, constituting a convenient platform for spatiotemporal modulation. We introduce a fully coupled electromechanical framework and circuit strategies to enable nonreciprocal piezoelectric metamaterials using various schemes that include capacitive and inductive shunts as well as smooth modulation and nonsmooth switching. The high-fidelity framework presented herein does not rely on the assumption of simplified effective material property representation, and can be used to explore and predict the complete dynamics of the modulated system, accounting for full-system stability, circuit limitations, and more complex modulation schemes. A set of results is presented based on nonreciprocal configurations that illustrate potential implementation schemes, and demonstrate the versatility of piezoelectric materials for the design of truly integrated acoustic/elastic wave devices featuring nonreciprocal transmission.
机译:最近的研究表明,材料特性的适当时空调制(即质量密度或刚度)可以破坏弹性波的互动:然而,这种概念在实验中实施在机械波导中是挑战性的。压电超材料通过电路提供参数改造的可能性,构成了一种方便的时空调制平台。我们介绍了一种完全耦合的机电框架和电路策略,以使用包括电容和电感分流器的各种方案以及平滑调制和非流动切换的各种方案来实现非渗透压电超材料。这里呈现的高保真框架不依赖于简化有效材料的假设,并且可用于探索和预测调制系统的完整动态,占全系统稳定性,电路限制和更复杂的调制方案。基于非透视配置提出了一组结果,其示出了潜在的实施方案,并证明了用于设计非透视传输的真正集成声学/弹性波装置的压电材料的多功能性。

著录项

  • 来源
    《Physical review》 |2020年第1期|014304.1-014304.7|共7页
  • 作者单位

    G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA;

    Department of Mechanical Engineering University of Colorado Boulder Boulder Colorado 80309 USA;

    G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta Georgia 30332 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号