...
首页> 外文期刊>Physical review >Topological Lifshitz transition of the intersurface Fermi-arc loop in NbIrTe_4
【24h】

Topological Lifshitz transition of the intersurface Fermi-arc loop in NbIrTe_4

机译:Nbirte_4中交叉面FERMI-ARC环路的拓扑LIFSHITZ过渡

获取原文
获取原文并翻译 | 示例
           

摘要

Surface arcs (SAs) or Fermi arcs connecting pairs of bulk Weyl points with opposite chiralities are the signatures of Weyl semimetals in angle-resolved photoemission speetroscopy (ARPES) studies. The nonlrivial topology of the bulk band structure guarantees the existence of these exotic Fermi arcs with connectivity that is strongly dependent on the surface. It has been theoretically proposed and experimentally continued that Fermi arcs at opposite surfaces can complete an unusual closed cyclotron orbit called a Weyl orbit, which leads to various intriguing transport properties. In this paper, a systematic ARPES study on opposite terminations (001) of type-Ⅱ Weyl semimetal NbIrTe_4 reveals different Fermi arc connections which result in a unique closed intersurface Fermi arc loop configurations (combining both projections of SAs) containing two pairs of Weyl points. In particular, the top surface ARPES data and corresponding ab initio calculation suggests that a topological Lifshitz transition occurs by tuning the chemical potential. SA rewiring on the top surface opens the intersurface arc loop at the Weyl node energy level into an open line, challenging the close-orbit description and leading to an unexplored scenario. Our results demonstrate the intrinsic alteration of Fermi arc connections and propose NbIrTe_4 as a potential platform to examine Fermi-arc related phenomenon.
机译:表面弧(SAS)或FERMI弧线连接与相对的手性相对的散装Weyl点对是角度分辨的光缩放型纤维镜(ARPES)研究中Weyl半定的签名。散装频带结构的非级别拓扑确保了具有强烈依赖于表面的连接的这些异乎寻常的费米弧。理论上拟议和实验继续,相反表面的费米弧可以完成称为Weyl Orbit的不寻常的闭合回旋加速器,这导致各种有趣的运输特性。在本文中,对Ⅱ型Weyl半型Nbirte_4的相反终端(001)的系统ARPES研究揭示了不同的FERMI电弧连接,其导致独特的封闭的交叉表面FERMI电弧环形配置(组合SA的两个投影),其中包含两对Weyl点。特别地,顶表面ARPES数据和相应的AB Initio计算表明通过调整化学潜力来发生拓扑Lifshitz过渡。在顶部表面上的SA重新安装将Weyl节点能量水平的内部弧循环打开到开放线路,挑战紧密轨道描述并导致未开发的方案。我们的结果证明了Fermi弧连接的内在改变,并提出了Nbirte_4作为潜在平台来检查Fermi-asc相关现象。

著录项

  • 来源
    《Physical review》 |2020年第8期|085126.1-085126.6|共6页
  • 作者单位

    Department of Physics University of Oxford Oxford OX1 3PU United Kingdom Swiss Light Source Paul Scherrer Institute CH-5232 Villigen Switzerland;

    Department of Physics University of Oxford Oxford OX1 3PU United Kingdom;

    Max Planck Institute for Chemical Physics of Solids D-01187 Dresden Germany;

    Materials and Structures Laboratory Tokyo Institute of Technology Yokohama Kanagawa 226-8503 Japan;

    School of Physical Science and Technology ShanghaiTech University and CAS-Shanghai Science Research Center Shanghai 200031 People's Republic of China;

    School of Physical Science and Technology ShanghaiTech University and CAS-Shanghai Science Research Center Shanghai 200031 People's Republic of China Advanced Light Source Lawrence Berkeley National Laboratory Berkeley California 94720 USA;

    State Key Laboratory of Low Dimensional Quantum Physics Department of Physics and Collaborative Innovation Center of Quantum Matter Tsinghua University Beijing 100084 People's Republic of China;

    Max Planck Institute for Chemical Physics of Solids D-01187 Dresden Germany;

    Department of Physics University of Oxford Oxford OX1 3PU United Kingdom College of Advanced Interdisciplinary Studies and Interdisciplinary Center for Quantum Information National University of Defense Technology Changsha 410073 People's Republic of China;

    Department of Physics University of Oxford Oxford OX1 3PU United Kingdom;

    Department of Physics University of Oxford Oxford OX1 3PU United Kingdom School of Physical Science and Technology ShanghaiTech University and CAS-Shanghai Science Research Center Shanghai 200031 People's Republic of China ShanghaiTech Laboratory for Topological Physics Shanghai 200031 People's Republic of China;

    Materials and Structures Laboratory Tokyo Institute of Technology Yokohama Kanagawa 226-8503 Japan;

    Max Planck Institute for Chemical Physics of Solids D-01187 Dresden Germany John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge Massachusetts 02138 USA Department of Physics Harvard University Cambridge Massachusetts 02138 USA;

    Weizmann Institute of Science Herzl St 234 Rehovot 76100 Israel;

    School of Physical Science and Technology ShanghaiTech University and CAS-Shanghai Science Research Center Shanghai 200031 People's Republic of China;

    Department of Physics University of Oxford Oxford OX1 3PU United Kingdom School of Physical Science and Technology ShanghaiTech University and CAS-Shanghai Science Research Center Shanghai 200031 People's Republic of China State Key Laboratory of Low Dimensional Quantum Physics Department of Physics and Collaborative Innovation Center of Quantum Matter Tsinghua University Beijing 100084 People's Republic of China ShanghaiTech Laboratory for Topological Physics Shanghai 200031 People's Republic of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号