...
首页> 外文期刊>Physical Review. B, Condensed Matter >First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to- device variability
【24h】

First-principles quantum transport method for disordered nanoelectronics: Disorder-averaged transmission, shot noise, and device-to- device variability

机译:无序纳米电子产品的第一原理量子传输方法:紊乱 - 平均传输,射击噪声和设备到装置的可变性

获取原文
获取原文并翻译 | 示例
           

摘要

Because disorders are inevitable in realistic nanodevices, the capability to quantitatively simulate thedisorder effects on electron transport is indispensable for quantum transport theory. Here, we report a unifiedand effective first-principles quantum transport method for analyzing effects of chemical or substitutionaldisorder on transport properties of nanoelectronics, including averaged transmission coefficient, shot noise, anddisorder-induced device-to-device variability. All our theoretical formulations and numerical implementationsare worked out within the framework of the tight-binding linear muffin tin orbital method. In this method,we carry out the electronic structure calculation with the density functional theory, treat the nonequilibriumstatistics by the nonequilbrium Green’s function method, and include the effects of multiple impurity scatteringwith the generalized nonequilibrium vertex correction (NVC) method in coherent potential approximation(CPA). The generalized NVC equations are solved from first principles to obtain various disorder-averagedtwo-Green’s-function correlators. This method provides a unified way to obtain different disorder-averagedtransport properties of disordered nanoelectronics from first principles. To test our implementation, we applythe method to investigate the shot noise in the disordered copper conductor, and find all our results for differentdisorder concentrations approach a universal Fano factor 1/3. As the second test,we calculate the device-to-devicevariability in the spin-dependent transport through the disordered Cu/Co interface and find the conductancefluctuation is very large in the minority spin channel and negligible in the majority spin channel. Our resultsagree well with experimental measurements and other theories. In both applications, we show the generalizednonequilibrium vertex corrections play a determinant role in electron transport simulation. Our results demonstratethe effectiveness of the first-principles generalized CPA-NVCfor atomistic analysis of disordered nanoelectronics,extending the capability of quantum transport simulation.
机译:由于紊乱在现实纳秒中是不可避免的,所以可以定量模拟的能力对电子传输的混乱影响对于量子传输理论是必不可少的。在这里,我们举报了一个统一的有效的第一原理量子传输方法,用于分析化学或替代的影响纳米电子物流运输性能的紊乱,包括平均传动系数,射击噪声和紊乱诱导的装置到装置可变性。我们所有的理论配方和数值实施在紧密结合的线性松饼罐轨道方法的框架内工作。在这种方法中,我们用密度函数理论进行电子结构计算,治疗非QuiBribium非Quilbrium Green的功能方法的统计数据,包括多种杂质散射的影响在相干潜在近似下的广义非Quilibrium校正(NVC)方法(CPA)。通过第一原理解决了广义的NVC方程,以获得各种疾病平均双绿色功能相关器。该方法提供了获得不同疾病平均的统一方法第一原理中无序纳米电子学的运输特性。要测试我们的实施,我们申请调查无序铜导体中的射击噪声的方法,并找到我们不同的结果紊乱浓度接近通用Fano因子1/3。作为第二个测试,我们计算设备到设备通过无序的Cu / Co界面旋转依赖传输的可变性并找到电导少数民族自旋通道的波动非常大,在大多数旋转通道中可以忽略不计。我们的结果与实验测量和其他理论相同。在这两个应用中,我们都显示了广义非QuiBribrium顶点校正在电子传输仿真中发挥了决定因素。我们的结果展示了第一原理的有效性推广CPA-NVC用于无序纳米电子学的原子分析,扩展量子传输模拟能力。

著录项

  • 来源
    《Physical Review. B, Condensed Matter》 |2017年第12期|125428.1-125428.11|共11页
  • 作者单位

    Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China Division of Condensed Matter Physics and Photonic Science School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China University of Chinese Academy of Sciences Beijing 100049 China;

    Division of Condensed Matter Physics and Photonic Science School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China The Center for Advanced Quantum Studies and Department of Physics Beijing Normal University Beijing 100875 China;

    The Center for Advanced Quantum Studies and Department of Physics Beijing Normal University Beijing 100875 China;

    Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 China Division of Condensed Matter Physics and Photonic Science School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China University of Chinese Academy of Sciences Beijing 100049 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号